精英家教网 > 高中数学 > 题目详情

 (本题满分12分)、若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1.在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,

(1)     求当x∈[1,2]时,f(x)的解析式;

(2)     定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值.

 

 

【答案】

(1)当x∈[1,2]时,f(x)=f(x-2)=-(x-2)+1=-x+3.

(2)当t=时,S最大值=

【解析】本试题主要是考查了函数的奇偶性和函数的解析式以及函数的最值的综合运用。

(1)因为∵f(x)是以2为周期的周期函数,当x∈[2,3]时,f(x)=x-1,

∴当x∈[0,1]时,f(x)=f(x+2)=(x+2)-1=x+1.

∵f(x)是偶函数,∴当x∈[-1,0]时,f(x)=f(-x)=-x+1,

当x∈[1,2]时,f(x)=f(x-2)=-(x-2)+1=-x+3.

(2)利用条件可设A、B的横坐标分别为3-t,t+1,1≤t≤2,则|AB|=(t+1)-(3-t)=2t-2,然后运用坐标表示三角形的面积。

(1)∵f(x)是以2为周期的周期函数,当x∈[2,3]时,f(x)=x-1,

∴当x∈[0,1]时,f(x)=f(x+2)=(x+2)-1=x+1.

∵f(x)是偶函数,∴当x∈[-1,0]时,f(x)=f(-x)=-x+1,

当x∈[1,2]时,f(x)=f(x-2)=-(x-2)+1=-x+3.

(2)设A、B的横坐标分别为3-t,t+1,1≤t≤2,则|AB|=(t+1)-(3-t)=2t-2,∴△ABC的面积为S=(2t-2)·(a-t)=-t2+(a+1)t-a(1≤t≤2)=-(t-)2+

∵2<a<3,∴<<2.当t=时,S最大值=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案