精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是

【答案】8
【解析】解:∵在区间[0,1)上,f(x)=
第一段函数上的点的横纵坐标均为有理数,
又f(x)是定义在R上且周期为1的函数,
∴在区间[1,2)上,f(x)= ,此时f(x)的图象与y=lgx有且只有一个交点;
同理:
区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;
区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;
区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;
区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;
区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;
区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;
区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;
在区间[9,+∞)上,f(x)的图象与y=lgx无交点;
故f(x)的图象与y=lgx有8个交点;
即方程f(x)﹣lgx=0的解的个数是8,
所以答案是:8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在同一个平面内,向量 的模分别为1,1, 的夹角为α,且tanα=7, 的夹角为45°.若 =m +n (m,n∈R),则m+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图多面体 两两垂直

.

() 若点在线段求证: 平面

()求直线与平面所成的角的正弦值

()求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y= 的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=(  )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是一个算法流程图,当输入的x=5时,那么运行算法流程图输出的结果是(
A.10
B.20
C.25
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC内接于半径为2的圆O,点P是圆O上的一个动点,则 的取值范围是(
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点,,,分别为椭圆: 的左、右顶点,下顶点和右焦点,直线过点,与椭圆交于点已知当直线轴时,.

(1)求椭圆的离心率;

(2)若当点重合时,点到椭圆的右准线的距离为上.

①求椭圆的方程;

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“ALS冰桶挑战赛是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.

1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?

2)为了解冰桶挑战赛与受邀请的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:


接受挑战

不接受挑战

合计

男性

45

15

60

女性

25

15

40

合计

70

30

100

根据表中数据,能否在犯错误的概率不超过0.1的前提下认为冰桶挑战赛与受邀请者的性别有关

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案