精英家教网 > 高中数学 > 题目详情

已知数列满足,则该数列前2012项和等于(  )    A.1340 B.1341 C.1342    D.1343

 

【答案】

C

【解析】解:因为

因此是周期为3的数列,2012=3670+2所以数列前2012项和等于,选C

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

20、若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正确的有(  )个.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若有穷数列a1,a2,a3,…,an(n是正整数),满足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.例如:数列1,2,3,3,2,1和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的对称数列,使得1,2,22…2m-1成为数列中连续的前m项,则数列{bn}的前2013项和S2013所有可能的取值的序号为(  )
①22013-1
②2(22013-1)
③2m+1-22m-2013-1
④3•2m-1-22m-2014-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能的取值的序号为(  )
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分7分,第3小题满分5分.

  在数列(p为非零常数),则称数列为“等差比”数列,p叫数列的“公差比”.

已知数列满足,判断该数列是否为等差比数列?

已知数列是等差比数列,且公差比,求数列的通项公式

(3)记为(2)中数列的前n项的和,证明数列也是等差比数列,并求出公差比p的值.

查看答案和解析>>

同步练习册答案