精英家教网 > 高中数学 > 题目详情
(本题满分13分)
如图,设抛物线的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动。
(1)当m=1时,求椭圆C2的方程;
(2)当的边长恰好是三个连续的自然数时,求面积的最大值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,以O为极点,X轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为:为参数);射线C2的极坐标方程为:,且射线C2与曲线C1的交点的横坐标为
(I )求曲线C1的普通方程;
(II)设A、B为曲线C1与y轴的两个交点,M为曲线C1上不同于A、B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证|OP|.|OQ|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形的三边由长6分米的材料弯折而成,边的长
分米();曲线拟从以下两种曲线中选择一种:曲线一段余弦曲线
(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点
边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点
边的距离为.
(1)试分别求出函数的表达式;
(2)要使得点边的距离最大,应选用哪一种曲线?此时,最大值是多少?
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点F(0,),动圆P经过点F且和直线y=相切,记动圆的圆心P的轨迹为曲线W.
⑴求曲线W的方程;⑵过点F作相互垂直的直线,分别交曲线W于A,B和C,D.①求四边形ABCD面积的最小值;②分别在A,B两点作曲线W的切线,这两条切线的交点记为Q,求证:QA⊥QB,且点Q在某一定直线上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的右焦点引直线,与的右准线交于点,与交于两点,与轴交于点,若,则的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与曲线切于点,则的值为(   )
A.3B.C.5 D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线的离心率,右焦点,方程的两个根分别为,则点
A.圆B.圆
C.圆D.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,过坐标原点且斜率为的直线
椭圆相交于
(Ⅰ)求椭圆的方程;
(Ⅱ)若动圆与椭圆和直线都没有公共点,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

线段是椭圆的一动弦,且直线与直线交于点,则

查看答案和解析>>

同步练习册答案