精英家教网 > 高中数学 > 题目详情
在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BD•BC.拓展到空间,在四面体A-BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在△BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为______.
由已知在平面几何中,
若△ABC中,AB⊥AC,AE⊥BC,E是垂足,
则AB2=BD•BC,
我们可以类比这一性质,推理出:
若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,
则(S△ABC2=S△BOC.S△BDC
故答案为:(S△ABC2=S△BOC.S△BDC
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

某校对文明班的评选设计了五个方面的多元评价指标,并通过经验公式样来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为        .(填入中的某个字母)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c的图象与x轴有两个不同的交点,若f(c)=0且0<x<c时,f(x)>0,
(1)证明:是f(x)=0的一个根;
(2)试比较与c的大小;
(3)证明:-2<b<-1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

我们知道,在边长为2a的正三角形内任一点到三边的距离之和为定值
3
a
,类比上述结论,在边长为3a的正四面体内任一点到其四个面的距离之和为定值______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则
S1
S2
=
1
4
,推广到空间可以得到类似结论;已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则
V1
V2
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面上有n个圆,其中每两个圆之间都相交于两个点,每三个圆都无公共点,它们将平面分成f(n)块区域,则f(n)的表达式是(  )
A.2nB.2n-(n-1)(n-2)(n-3)
C.n3-5n2+10n-4D.n2-n+2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

可作为四面体的类比对象的是(  )
A.四边形B.三角形C.棱锥D.棱柱

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在点处的导数是  (     )
A.B.C.D.

查看答案和解析>>

同步练习册答案