£¨2005•¾²°²Çøһģ£©ÒÑÖªµÈ²îÊýÁÐ{a
n}µÄÊ×ÏîΪp£¬¹«²îΪd£¨d£¾0£©£®¶ÔÓÚ²»Í¬µÄ×ÔÈ»Êýn£¬Ö±Ïßx=a
nÓëxÖáºÍÖ¸Êýº¯Êý
f(x)=()xµÄͼÏó·Ö±ð½»ÓÚµãA
nÓëB
n£¨ÈçͼËùʾ£©£¬¼ÇB
nµÄ×ø±êΪ£¨a
n£¬b
n£©£¬Ö±½ÇÌÝÐÎA
1A
2B
2B
1¡¢A
2A
3B
3B
2µÄÃæ»ý·Ö±ðΪs
1ºÍs
2£¬Ò»°ãµØ¼ÇÖ±½ÇÌÝÐÎA
nA
n+1B
n+1B
nµÄÃæ»ýΪs
n£®
£¨1£©ÇóÖ¤ÊýÁÐ{s
n}Êǹ«±È¾ø¶ÔֵСÓÚ1µÄµÈ±ÈÊýÁУ»
£¨2£©Éè{a
n}µÄ¹«²îd=1£¬ÊÇ·ñ´æÔÚÕâÑùµÄÕýÕûÊýn£¬¹¹³ÉÒÔb
n£¬b
n+1£¬b
n+2Ϊ±ß³¤µÄÈý½ÇÐΣ¿²¢Çë˵Ã÷ÀíÓÉ£»
£¨3£©£¨Àí£©Éè{a
n}µÄ¹«²îd£¨d£¾0£©ÎªÒÑÖª³£Êý£¬ÊÇ·ñ´æÔÚÕâÑùµÄʵÊýpʹµÃ£¨1£©ÖÐÎÞÇîµÈ±ÈÊýÁÐ{s
n}¸÷ÏîµÄºÍS£¾2010£¿²¢Çë˵Ã÷ÀíÓÉ£®
£¨4£©£¨ÎÄ£©Éè{a
n}µÄ¹«²îd=1£¬ÊÇ·ñ´æÔÚÕâÑùµÄʵÊýpʹµÃ£¨1£©ÖÐÎÞÇîµÈ±ÈÊýÁÐ{s
n}¸÷ÏîµÄºÍS£¾2010£¿Èç¹û´æÔÚ£¬¸ø³öÒ»¸ö·ûºÏÌõ¼þµÄpÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®