£¨2005•¾²°²Çøһģ£©ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×ÏîΪp£¬¹«²îΪd£¨d£¾0£©£®¶ÔÓÚ²»Í¬µÄ×ÔÈ»Êýn£¬Ö±Ïßx=anÓëxÖáºÍÖ¸Êýº¯Êýf(x)=(
12
)x
µÄͼÏó·Ö±ð½»ÓÚµãAnÓëBn£¨ÈçͼËùʾ£©£¬¼ÇBnµÄ×ø±êΪ£¨an£¬bn£©£¬Ö±½ÇÌÝÐÎA1A2B2B1¡¢A2A3B3B2µÄÃæ»ý·Ö±ðΪs1ºÍs2£¬Ò»°ãµØ¼ÇÖ±½ÇÌÝÐÎAnAn+1Bn+1BnµÄÃæ»ýΪsn£®
£¨1£©ÇóÖ¤ÊýÁÐ{sn}Êǹ«±È¾ø¶ÔֵСÓÚ1µÄµÈ±ÈÊýÁУ»
£¨2£©Éè{an}µÄ¹«²îd=1£¬ÊÇ·ñ´æÔÚÕâÑùµÄÕýÕûÊýn£¬¹¹³ÉÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤µÄÈý½ÇÐΣ¿²¢Çë˵Ã÷ÀíÓÉ£»
£¨3£©£¨Àí£©Éè{an}µÄ¹«²îd£¨d£¾0£©ÎªÒÑÖª³£Êý£¬ÊÇ·ñ´æÔÚÕâÑùµÄʵÊýpʹµÃ£¨1£©ÖÐÎÞÇîµÈ±ÈÊýÁÐ{sn}¸÷ÏîµÄºÍS£¾2010£¿²¢Çë˵Ã÷ÀíÓÉ£®
£¨4£©£¨ÎÄ£©Éè{an}µÄ¹«²îd=1£¬ÊÇ·ñ´æÔÚÕâÑùµÄʵÊýpʹµÃ£¨1£©ÖÐÎÞÇîµÈ±ÈÊýÁÐ{sn}¸÷ÏîµÄºÍS£¾2010£¿Èç¹û´æÔÚ£¬¸ø³öÒ»¸ö·ûºÏÌõ¼þµÄpÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©£©an=p+£¨n-1£©d£¬Ö±½ÇÌÝÐÎAnAn+1Bn+1BnµÄÁ½µ×³¤¶ÈAnBn=f£¨an£©£¬An+1Bn+1=f£¨an+1£©£®¸ßΪAnAn+1 =d£¬ÀûÓÃÌÝÐÎÃæ»ý¹«Ê½±íʾ³ösn£®ÀûÓõȱÈÊýÁж¨Òå½øÐÐÖ¤Ã÷¼´¿É£®
£¨2£©an=-1+£¨n-1£©=n-2£¬bn=(
1
2
)n-2
£¬ÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤Äܹ¹³ÉÒ»¸öÈý½ÇÐΣ¬Ôòbn+2+bn+1£¾bn¿¼²é´Î²»µÈʽ½âµÄÇé¿ö×÷½â´ð£®
£¨3£©ÀûÓÃÎÞÇîµÈ±ÈÊýÁÐÇóºÍ¹«Ê½£¬½«S£¾2010 »¯¼òΪS=
d(2d+1)
2p+1(2d-1)
£¾2010£¬Ôò2p£¼
d(2d+1)
2¡Á2010¡Á(2d-1)
̽ÌÖpµÄ´æÔÚÐÔ£®
£¨4£©ÀûÓÃÎÞÇîµÈ±ÈÊýÁÐÇóºÍ¹«Ê½£¬½«S£¾2010 »¯¼òΪ S=
3
2p+1
£¾2010
£¬Ì½ÌÖpµÄ´æÔÚÐÔ£®
½â´ð£º½â£º£¨1£©an=p+£¨n-1£©d£¬bn=(
1
2
)p+(n-1)d
£¨2·Ö£©sn=
d
2
[(
1
2
)p+(n-1)d+(
1
2
)p+nd]=
d
2
•(
1
2
)p•[(
1
2
)(n-1)d+(
1
2
)nd]
£¬
¶ÔÓÚÈÎÒâ×ÔÈ»Êýn£¬
sn+1
sn
=
(
1
2
)
nd
+(
1
2
)
(n+1)d
(
1
2
)
(n-1)d
+(
1
2
)
nd
=
1+(
1
2
)
d
2d+1
=(
1
2
)d
£¬
ËùÒÔÊýÁÐ{sn}ÊǵȱÈÊýÁÐÇÒ¹«±Èq=(
1
2
)d
£¬
ÒòΪd£¾0£¬ËùÒÔ|q|£¼1£¨4·Ö£©
£¨Ð´³Ésn=
d
2
[(
1
2
)a1+nd+(
1
2
)a1+(n-1)d]=d•(1+2d)•(
1
2
)a1+1•(
1
2
)nd
£¬µÃ¹«±Èq=(
1
2
)d
Ò²¿É£©
£¨2£©an=-1+£¨n-1£©=n-2£¬bn=(
1
2
)n-2
£¬
¶Ôÿ¸öÕýÕûÊýn£¬bn£¾bn+1£¾bn+2£¨6·Ö£©
ÈôÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤Äܹ¹³ÉÒ»¸öÈý½ÇÐΣ¬
Ôòbn+2+bn+1£¾bn£¬¼´(
1
2
)n+(
1
2
)n-1£¾(
1
2
)n-2
£¬1+2£¾4£¬
ÕâÊDz»¿ÉÄܵĠ        £¨9·Ö£©
ËùÒÔ¶Ôÿһ¸öÕýÕûÊýn£¬ÒÔbn£¬bn+1£¬bn+2Ϊ±ß³¤²»Äܹ¹³ÉÈý½ÇÐΠ           £¨10·Ö£©
£¨3£©£¨Àí£©ÓÉ£¨1£©Öª£¬0£¼q£¼1£¬s1=
d(1+2d)
2p+12d
£¨11·Ö£©
ËùÒÔS=
s1
1-q
=
d(2d+1)
2p+1(2d-1)
£¨14·Ö£©
ÈôS=
d(2d+1)
2p+1(2d-1)
£¾2010£¬Ôò2p£¼
d(2d+1)
2¡Á2010¡Á(2d-1)
£¨16·Ö£©
Á½±ßÈ¡¶ÔÊý£¬ÖªÖ»Òªa1=pȡֵΪСÓÚlog2
d(2d+1)
2¡Á2010¡Á(2d-1)
µÄʵÊý£¬¾ÍÓÐS£¾2010£¨18·Ö£©
˵Ã÷£ºÈç¹û·Ö±ð¸ø³öa1ÓëdµÄ¾ßÌåÖµ£¬ËµÃ÷Çå³þÎÊÌ⣬Ҳ²ÎÕÕÇ°ÃæµÄÆÀ·Ö±ê×¼×ÃÇé¸ø·Ö£¬µ«²»µÃ³¬¹ý¸Ã²¿·Ö·ÖÖµµÄÒ»°ë£®
£¨4£©£¨ÎÄ£©s1=
3
22+p
£¬q=
1
2
£¨11·Ö£©
ËùÒÔS=
s1
1-q
=
3
2p+1
£¨14·Ö£©
Èç¹û´æÔÚpʹµÃS=
3
2p+1
£¾2010
£¬¼´2p£¼
3
4020
=
1
1340
£¨16·Ö£©
Á½±ßÈ¡¶ÔÊýµÃ£ºp£¼-log21340£¬
Òò´Ë·ûºÏÌõ¼þµÄpÖµ´æÔÚ£¬log21340¡Ö10.4£¬¿ÉÈ¡p=-11µÈ               £¨18·Ö£©
˵Ã÷£ºÍ¨¹ý¾ßÌåµÄpÖµ£¬ÑéÖ¤S=
3
2p+1
£¾2010
Ò²¿É£®
µãÆÀ£º±¾ÌâÊǺ¯ÊýÓëÊýÁС¢²»µÈʽµÄ½áºÏ£®¿¼²éµÈ±ÈÊýÁеÄÅж¨£¬º¬²ÎÊý²»µÈʽ½âµÄÌÖÂÛ£®¿¼²é·ÖÎö½â¾öÎÊÌ⣬¼ÆË㣬Âß¼­Ë¼Î¬µÈÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2005•¾²°²Çøһģ£©Èôº¯Êýy=f£¨x£© £¨x¡ÊR£©Âú×ãf£¨x+2£©=f£¨x£©£¬ÇÒx¡Ê£¨-1£¬1]ʱ£¬f£¨x£©=|x|£®Ôòº¯Êýy=f£¨x£©µÄͼÏóÓ뺯Êýy=log4|x|µÄͼÏóµÄ½»µãµÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2005•¾²°²Çøһģ£©ÈôÔÚͬһ×ø±êϵÄÚº¯Êýy=f£¨x£©Óëy=x3µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Ôòf£¨x£©=
3x
3x
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2005•¾²°²Çøһģ£©ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx£©•cos£¨¦Øx£©£¨¦Ø£¾0£©£¨x¡ÊR£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬Ôò¦Ø=
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2005•¾²°²Çøһģ£©Èôf(¦È)=sin¦È+2cos¦È=
5
sin(¦È+?)(-
¦Ð
2
£¼?£¼
¦Ð
2
)
£¬Ôò?=
arccos
5
5
£¬»ò(arctan2)
arccos
5
5
£¬»ò(arctan2)
£®£¨Ó÷´Èý½Çº¯Êý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2005•¾²°²Çøһģ£©Èçͼ£¬ÕýËÄÀâ׶S-ABCDµÄ²àÀⳤÊǵ×Ãæ±ß³¤µÄ2±¶£¬ÔòÒìÃæÖ±ÏßSAÓëBCËù³É½ÇµÄ´óСÊÇ
arccos
1
4
arccos
1
4
£¨Ó÷´Èý½Çº¯Êý±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸