精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足对任意n∈N*都成立;求证:数列{cn}是等比数列.
【答案】分析:(Ⅰ)设数列{an}的公差为d,数列{bn}的公比为q(q>0),列关于d与q的方程组求得d与q,即可求得{an},{bn}的通项公式;
(Ⅱ)由cn+2cn-1+…+(n-1)c2+nc1=2n+1-n-2向下递推一项可得cn-1+2cn-2+…+(n-2)c2+(n-1)c1=2n-(n-1)-2(n≥2),两式相减即可求得cn=2n-1(n≥3),再验证n=1,2时的情况即可,符合则合,不符合则分段写.
解答:(Ⅰ)设数列{an}的公差为d,数列{bn}的公比为q(q>0)
由题意得
 解得
∴an=n,bn=3×2n-1
(Ⅱ)由cn+2cn-1+…+(n-1)c2+nc1=2n+1-n-2
知cn-1+2cn-2+…+(n-2)c2+(n-1)c1=2n-(n-1)-2(n≥2)
两式相减:cn+cn-1+…+c2+c1=2n-1(n≥2)
∴cn-1+…+c2+c1=2n-1-1(n≥3)
∴cn=2n-1(n≥3)
当n=1,2时,c1=1,c2=2,适合上式.
∴cn=2n-1(n∈N*).
即{cn}是等比数列
点评:本题考查等差数列与等比数列的通项公式,考查数列的求和,突出考查方程组思想、转化思想与分类讨论思想的综合运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案