精英家教网 > 高中数学 > 题目详情
将函数y=sin(6x+
π
4
)的图象上各点的横坐标伸长到原来的3倍,再向右平移
π
8
个单位,得到函数f(x).
(1)写出f(x)的解析式
(2)求f(x)的对称中心.
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:(1)根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.
(2)根据正弦函数的图象的对称性,求出f(x)的对称中心.
解答: 解:(1)将函数y=sin(6x+
π
4
)的图象上各点的横坐标伸长到原来的3倍,可得函数y=sin(2x+
π
4
)的图象,
再向右平移
π
8
个单位,可得f(x)=sin[2(x-
π
8
)+
π
4
]=sin2x的图象.
(2)令2x=kπ,k∈z,求得x=
k
2
π,k∈z,
∴函数f(x)的对称中心(
2
,0)
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),过椭圆C的右焦点F的直线l交椭圆于A,B两点,交y轴于P点,设
PA
=m
AF
PB
=n
BF
,(m,n∈R).已知椭圆C上的点到焦点F的最大值与最小值的比值为3+2
2

(1)求椭圆的离心率;
(2)求证:m+n为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中,AB=1,AC=2,∠BAC=120°,点M是边BC上的动点,动点N满足∠MAN=30°,
AM
AN
=3(点A,M,N按逆时针方向排列).
(1)若
AN
AC
(λ>0),求BN的长;
(2)求△ABN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x-cos2x(x∈R).
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在锐角三角形ABC中,a、b、c分别是角A、B、C的对边,若f(A)=2,c=3,△ABC的面积为3
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于80小于90为二等品,小于80为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利30元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
测试指标 [70,75) [75,80) [80,85) [85,90) [90,95) [95,100)
3 7 20 40 20 10
5 15 35 35 7 3
现将根据上表统计得到甲、乙两人生产产品A为一等品、二等品、三等品的频率分别估计为他们生产产品A为一等品、二等品、三等品的概率.
(1)计算新工人乙生产三件产品A,给工厂带来盈利大于或等于100元的概率;
(2)记甲乙分别生产一件产品A给工厂带来的盈利和记为X,求随机变量X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦共种植了34亩,所得亩产数据(单位:千克)如下.
(Ⅰ)用茎叶图处理现有的数据,有什么优点?
(Ⅱ)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数:
(1)y=ax42+2
(2)y=
3x2
+log2x
(3)y=
2x3-3x+
x
-1
x
x

(4)y=2xtanx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx+1,是否存在实数a,使得函数y=(f(x)-1)2+2af(
π
2
-x)+
a
2
-6在区间[0,
π
2
]上的最大值是4?若存在,求出对应的a的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2-2x+a=0在(
1
2
,3)上恰有2个不相等的实数根,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案