精英家教网 > 高中数学 > 题目详情
计算:sin50°+cos40°(1+
3
tan10°)÷cos220°.
考点:同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:切化弦,利用辅助角公式化简,即可得出结论.
解答: 解:原式=[sin50°+2cos40°(
1
2
cos10°+
3
2
sin10°)÷cos10°]÷cos220°
=(sin50°+2cos40°sin40°÷cos10°)÷cos220°
=2(sin50°+1)÷(1+cos40°)=2
点评:本题考查辅助角公式,考查切化弦,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
4
+y2=1,
(1)若直线l过点Q(1,1),交椭圆C于A、B两点,求直线l的方程使得Q为AB的中点;
(2)定点M(0,2),P为椭圆C上任意一点,求线段PM的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆柱的轴截面(经过圆柱的轴所作的截面)是边长为5cm的正方形ABCD,则圆柱侧面上从A到C的最短距离为(  )
A、10 cm
B、
5
2
π2+4
 cm
C、5
2
 cm
D、5
π2+1
 cm

查看答案和解析>>

科目:高中数学 来源: 题型:

P为椭圆
x2
25
+
y2
9
=1上一点,F1,F2为左右焦点,若∠F1PF2=60°.
(1)求△F1PF2的面积;
(2)求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左顶点为A,左焦点为F,上顶点为B,且∠BAO+∠BFO=90°(O为坐标原点),则椭圆的离心率e=(  )
A、
5
-1
2
B、
1
2
C、
3
-1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)在[0,3]上单调递增,且对于任意的x,y∈R都有f(x+y)=f(x)f(3-y)+f(3-x)f(y)
(1)求f(0)和f(1)的值;
(2)求证:f(x)为周期函数;
(3)求满足不等式f(4x+1)≥
1
2
的实数x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
xlnx
1+x
,在x=x0处取得极值.
(1)证明:f(x0)=-x0
(2)是否存在实数a,使得对任意x∈(0,+∞),f(x)≥
a(x-1)
x
?若存在,求a的所有值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.
(1)写出每人需交费用y关于人数x的函数;
(2)旅行团人数为多少时,旅行社可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一条直线l过定点M(2,1),且与x,y轴的正半轴分别相交于A,B(O是直角坐标系的原点).
(1)当三角形△ABO的面积为
9
2
时,求直线l的方程;
(2)当三角形△ABO的面积最小时,求直线l的方程.

查看答案和解析>>

同步练习册答案