精英家教网 > 高中数学 > 题目详情
圆柱的轴截面(经过圆柱的轴所作的截面)是边长为5cm的正方形ABCD,则圆柱侧面上从A到C的最短距离为(  )
A、10 cm
B、
5
2
π2+4
 cm
C、5
2
 cm
D、5
π2+1
 cm
考点:多面体和旋转体表面上的最短距离问题
专题:空间位置关系与距离
分析:把圆柱沿着一条母线剪开后展开,然后利用直角三角形中的勾股定理求解从A到C的最短距离.
解答: 解:如图,

∵圆柱的轴截面是边长为5cm的正方形,展开后为矩形ABA′B′,
BC为圆柱底面圆的周长的一半,等于
2

AB=5,
∴圆柱侧面上从A到C的最短距离为
AB2+BC2
=
25+
25π2
4
=
5
2
4+π2

故选:B
点评:本题考查了旋转体中的最短距离问题,关键在于对旋转体的剪展,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的一个动点,直线AB,AC分别过焦点F1,F2,且与椭圆交于B,C两点,若当AC⊥x轴时,恰好有|AF1|:|AF2|=3:1,则该椭圆的离心率为(  )
A、
1
2
B、
2
2
C、
3
3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥的高比底面边长小4,且其外接球的表面积为196π,则该正三棱锥的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

地面上有两个同心圆(如图),其半径分别为1,2.若向图中最大的圆内投点且投到图中阴影区域的概率为
5
8
,则两直线所夹锐角的弧度数为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点B、C在椭圆
x2
4
+
y3
3
=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3x2+5的单调减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式|x+1|+|x-2|>a的解集为R,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:sin50°+cos40°(1+
3
tan10°)÷cos220°.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆
x2
m
+
y2
n
=1(m>0,n>0)的一个顶点与两个焦点构成等边三角形,且一个焦点恰好是抛物线y2=8x的焦点,则该椭圆的离心率为
 
①,标准方程为
 

查看答案和解析>>

同步练习册答案