精英家教网 > 高中数学 > 题目详情
已知A、B为x轴上不同的两点,点P的横坐标为1,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程为 ( )
A.x+y-3=0
B.x+3y-7=0
C.x+y-5=0
D.2y-x-3=0
【答案】分析:利用直线PA的方程为x-y+1=0求出PA的斜率,根据|PA|=|PB|,求出PB的倾斜角,再求出P的坐标,然后可求出直线PB的方程.
解答:解:由于直线PA的方程为x-y+1=0,∴直线PA的倾斜角为45°,
∵|PA|=|PB|,∴直线PB的倾斜角为135°,
又当x=1时,y=2,即P(1,2),
∴直线PB的方程为y-2=-(x-1),即x+y-3=0.
故选A
点评:本题考查与直线关于点、直线对称的直线方程,考查逻辑推理能力,计算能力,转化思想的应用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>b>0F是方程
x2
b2
+
y2
a2
=1
的椭圆E的一个焦点,P、A,B是椭圆E上的点,
PF
与x轴平行,
PF
=
a
4
,设A(x1,y1),B(x2,y2),
i
=(
x1
b
y1
a
)
n
=(
x2
b
y2
a
)
i
n
原点O与A、B两点构成的△AOB的面积为S
(I )求椭圆E的离心率
(II)设椭圆E上的点与椭圆£的长轴的两个端点构成的三角形的面积的最大值等于2,S是否为定值?如果是,求出这个定值:如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为
1
2
,点B在x轴上,AB⊥AF,A、B、F三点确定的圆C恰好与直线x+
3
y+3=0
相切.
(1)求椭圆的方程;
(2)设O为椭圆的中心,过F点作直线交椭圆于M、N两点,在椭圆上是否存在点T,使得
OM
+
ON
+
OT
=
0
,如果存在,则求点T的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B为椭圆
x2
4
+
y2
3
=1
的左右顶点,F为椭圆的右焦点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交直线l:x=m(m>2)于M、N两点,l交x轴于C点.
(Ⅰ)当PF∥l时,求直线AM的方程;
(Ⅱ)是否存在实数m,使得以MN为直径的圆过点F,若存在,求出实数m的值;,若不存在,请说明理由;
(Ⅲ)对任意给定的m值,求△MFN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B分别是直线y=
3
3
x
y=-
3
3
x
上的两个动点,线段AB的长为2
3
,P是AB的中点.
(1)求动点P的轨迹C的方程;
(2)过点Q(1,0)任意作直线l(与x轴不垂直),设l与(1)中轨迹C交于M、N,与y轴交于R点.若
RM
MQ
RN
NQ
,证明:λ+μ 为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市张家港外国语学校高二(上)周日数学试卷2(理科)(解析版) 题型:解答题

已知A、B为椭圆的左右顶点,F为椭圆的右焦点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交直线l:x=m(m>2)于M、N两点,l交x轴于C点.
(Ⅰ)当PF∥l时,求直线AM的方程;
(Ⅱ)是否存在实数m,使得以MN为直径的圆过点F,若存在,求出实数m的值;,若不存在,请说明理由;
(Ⅲ)对任意给定的m值,求△MFN面积的最小值.

查看答案和解析>>

同步练习册答案