(本小题满分12分)函数f(x)=ax2-2(a-1)x-2lnx ,a>0
(1)求函数f(x)的单调区间;
(2)对于函数图像上的不同两点A(x1,y1),B(x2,y2),如果在函数图像上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l平行于直线AB,则称AB存在“伴随切线”,当x0= 时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图像上是否存在不同两点A,B,使得AB存在“中值伴随切线”?若存在,求出A,B的坐标;若不存在,说明理由
(1) 递增区间是,递减区间是(2)
【解析】(1)先求出函数的导数,然后根据导数知识求出函数的单调区间;(2)对于是否存在问题,先假设存在,把结论当条件,构造函数,利用导数法得出函数的单调性,再利用单调性得出不等式,推出与已知条件矛盾,得出假设不成立
解:(1),
,
所以:递增区间是,递减区间是;………………………………………6分
(2)假设存在不同两点,(不妨设),使得存在“中值伴随切线”,则,………………………………………7分
化简得:,即,……………………………8分
设函数,则,
当时,,即在上是增函数,………………………10分
又,所以,即,与上面结论矛盾,
所以在函数的图像上是不存在不同两点,使得存在“中值伴随切线”.12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com