精英家教网 > 高中数学 > 题目详情
8.如图,E为矩形ABCD所在平面外一点,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)G为矩形ABCD对角线的交点,求三棱锥C-BGF的体积.

分析 (Ⅰ)先证明AE⊥BC,再证AE⊥BF,由线面垂直的判定定理证明结论.
(Ⅱ)运用等体积法,先证FG⊥平面BCF,把原来的三棱锥的底换成面BCF,则高就是FG,代入体积公式求三棱锥的体积.

解答 (Ⅰ)证明:∵AD⊥平面ABE,AD∥BC,
∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF
∴AE⊥平面BCE.
(Ⅱ)解:∵AE∥平面BFD,∴AE∥FG,而AE⊥平面BCE,
∴FG⊥平面BCE,∴FG⊥平面BCF,
∵G是AC中点,∴F是CE中点,且FG=$\frac{1}{2}$AE=1,
∵BF⊥平面ACE,∴BF⊥CE.
∴Rt△BCE中,BF=CF=$\frac{1}{2}$CE=$\sqrt{2}$.
∴S△CFB=$\frac{1}{2}•\sqrt{2}•\sqrt{2}$=1
∴VC-BFG=VG-BCF=$\frac{1}{3}$S△CFB•FG=$\frac{1}{3}$.

点评 本题考查线面垂直的证明方法,利用等体积法求三棱锥的体积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.袋中编号为1,2,3,4,5的五只小球,从中任取3只球.
(1)求编号之和不小于10的概率;
(2)以ξ表示取出的球的最大号码,求ξ的分布列及E(ξ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}是各项为正数的数列,前n项和为Sn,且2$\sqrt{2{S}_{n}}$=an+2.
(1)求证:{an}是等差数列;
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Bn,求证:Bn<$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.有A,B,C,D,E五位同学参加英语口语竞赛培训,现分别从A,B二人在培训期间参加的若干次预赛成绩中随机抽取8次得到的两组数据,这两组数据的样本茎叶图如图所示.
(1)现要从A,B中选派一人参加英语口语竞赛,从平均水平个方差的角度考虑,你认为派哪位同学参加较合适?请说明理由;
(2)若从参加培训的5位同学中任选二人参加英语口语竞赛,求A,B二人都没有参加竞赛的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若a、b是方程x+lgx=4,x+10x=4的解,函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(a+b)x+2,x≤0}\\{2,x>0}\end{array}\right.$,则关于方程x的方程f(x)=x的解的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在2013年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:
价格x99.51010.511
销售量y1110865
通过分析,发现销售量y对商品的价格x具有线性相关关系.
(1)求销售量y对商品的价格x的回归直线方程;
(2)欲使销售量为12,则价格应定为多少.
附:在回归直线$y=\hat bx+\hat a$中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知a,b,c>0且a+b+c=1,求证:$\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}≤3\sqrt{2}$;
(2)已知n∈N*,求证:$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{n}}}≤2\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的对称中心为原点O,焦点在x轴上,左、右焦点分别为F1、F2,上顶点和右顶点分别为B、A,线段AB的中心为D,且kOD•kAB=-$\frac{1}{2}$,△AOB的面积为2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于M、N两点,以线段OM、ON为邻边作平行四边形OMPN,点P在椭圆上,求点O到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果袋中有六个红球,四个白球,从中任取一球,确认颜色后放回,重复摸取四次,设X为取得红球的次数,那么X的均值为(  )
A.$\frac{3}{4}$B.$\frac{12}{5}$C.$\frac{19}{7}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案