精英家教网 > 高中数学 > 题目详情
19.(1)化简下列各式:
(Ⅰ)$\sqrt{5+2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$-$\sqrt{6-4\sqrt{2}}$;
(Ⅱ)$\frac{1}{\root{3}{(2+\sqrt{5})^{3}}}$+$\frac{1}{(\root{3}{2-\sqrt{5}})^{3}}$;
(Ⅲ)$\sqrt{4{x}^{2}-4x+1}$+2$\root{4}{(x-2)^{4}}$($\frac{1}{2}$≤x≤2).

(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}-3}$的值.

分析 (1)(Ⅰ)每一项的被开方数变成完全平方的形式,便可开出平方,从而得出答案;
(Ⅱ)进行根式的运算,再通分即可得出答案;
(Ⅲ)根据x的范围,进行开平方和开四次方的运算即可;
(2)可先求出x+x-1=7,然后把原式的分子写成完全平方的形式,而分母利用立方和公式写成因式乘积的形式,然后带入${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$的值和x+x-1的值再运算即可.

解答 解:(1)(Ⅰ)$\sqrt{5+2\sqrt{6}}=\sqrt{(\sqrt{2}+\sqrt{3})^{2}}=\sqrt{2}+\sqrt{3}$,$\sqrt{7-4\sqrt{3}}=\sqrt{(2-\sqrt{3})^{2}}=2-\sqrt{3}$,$\sqrt{6-4\sqrt{2}}=\sqrt{(2-\sqrt{2})^{2}}=2-\sqrt{2}$;
∴原式=$\sqrt{2}+\sqrt{3}+2-\sqrt{3}+2-\sqrt{2}=4$;
(Ⅱ)原式=$\frac{1}{2+\sqrt{5}}+\frac{1}{2-\sqrt{5}}=\frac{2-\sqrt{5}+2+\sqrt{5}}{4-5}=-4$;
(Ⅲ)原式=$\sqrt{(2x-1)^{2}}+2|x-2|$;
∵$\frac{1}{2}≤x≤2$;
∴1≤2x≤4;
∴$\sqrt{(2x-1)^{2}}=2x-1$,|x-2|=2-x;
∴原式=2x-1+2(2-x)=3;
(2)x2+x-2-2=(x-x-12,${x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}-3$=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})(x-1+{x}^{-1})-3$;
由${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}=3$得:$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}=9$;
∴x+2+x-1=9;
∴x+x-1=7;
∴原式=$\frac{{7}^{2}}{3×6-3}=\frac{49}{15}$.

点评 考查完全平方公式在开平方中的运用,根式的运算,开偶次方时应注意得出的值要大于0,完全平方公式和立方和公式在化简求值中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知变量x,y∈R且满足约束条件$\left\{\begin{array}{l}x≥1\\ x-y+1≥0\\ 2x-y-2≤0\end{array}\right.$则x+2y的最大值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.$\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}$等于(  )
A.-4B.2$\sqrt{3}$C.-2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,是真命题的是(  )
A.垂直于同一平面的两平面平行
B.垂直于同一直线的两平面平行
C.与一直线成等角的两平面平行
D.若一个直角在平面α上的射影仍是一个直角,则这个角所在的平面与平面α平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数g(x)=x2-2(x∈R),f(x)=$\left\{\begin{array}{l}{g(x)+x+4,x<g(x)}\\{g(x)-x,x≥g(x)}\end{array}\right.$
(1)作出f(x)的函数图象;
(2)写出f(x)的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)满足f(x)+2f($\frac{1}{x}$)=ax,则函数f(x)的解析式为f(x)=$\frac{2a}{3x}-\frac{ax}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.A、B两车相距20m,A在前B在后,沿同一方向运动,A车以2m/s的速度作匀速直线运动,B以大小为2.5m/s2的加速度作匀减速直线运动,若要B追上A,则B的初速度应满足什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A∩B={3},(∁UA)∩B={4,6,8},A∩(∁UB)={1,5},(∁UA)∪(∁UB)={x|x<10,且x≠3,x∈N*},求A,B,∁U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如果x,y∈R,比较(x2+y22与xy(x+y)2的大小.

查看答案和解析>>

同步练习册答案