精英家教网 > 高中数学 > 题目详情
11.在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上随机取一个数x,cosx的值介于0到$\frac{1}{2}$之间的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 本题是几何概型,首先求出满足cosx∈(0,$\frac{1}{2}$)的x 范围,利用区间长度比求概率.

解答 解:在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上随机取一个数x,等于区间长度为π,cosx的值介于0到$\frac{1}{2}$之间的x范围为[$-\frac{π}{2}$,-$\frac{π}{3}$]∪[$\frac{π}{3}$,$\frac{π}{2}$].区间长度为$\frac{π}{3}$,由几何概型的公式得到所求概率为$\frac{\frac{π}{3}}{π}=\frac{1}{3}$;
故选A.

点评 本题考查了几何概型的概率求法;关键是明确几何测度,利用区间长度的比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短轴端点到右焦点F(1,0)的距离为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线交椭圆C于A,B两点,交直线l:x=4于点P,若|PA|=λ1|AF|,|PB|=λ2|BF|,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)计算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的结果猜想一个普遍的结论,并加以证明;
(3)求值f(1)+f(2)+…+f(2017)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2017}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知定义域为正整数集的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x,x为偶数}\\{x-1,x为奇数}\end{array}\right.$,f1(x)=f(x),fn(x)=f[fn-1(x)].若fn(21)=1,则n=6;若f4(x)=1,则x所有的值构成的集合为{7,9,10,12,16}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.下表是某厂的产量x与成本y的一组数据:
产量x(千件)2356
成本y(万元)78912
(Ⅰ)根据表中数据,求出回归直线的方程$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$(其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
(Ⅱ)预计产量为8千件时的成本.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题p:曲线C:(m+2)x2+my2=1表示双曲线,命题q:方程y2=(m2-1)x表示的曲线是焦点在x轴的负半轴上的抛物线,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线x-ysinθ+1=0的倾斜角的取值范围是(  )
A.$[{\frac{π}{4},\frac{3π}{4}}]$B.$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$C.$[{0,\frac{π}{4}}]$D.$[{\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,其共轭复数为$\overline z$,求$|\frac{1}{z}|+{(\overline z)^2}$;
(Ⅱ)设集合A={y|$y={x^2}-2x+\frac{1}{2}$},B={x|m+x2≤1,m<1}.命题p:x∈A;命题q:x∈B.若p是q的必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案