精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)计算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的结果猜想一个普遍的结论,并加以证明;
(3)求值f(1)+f(2)+…+f(2017)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2017}$).

分析 (1)代值计算即可,
(2)猜想:$f(x)+f(\frac{1}{x})=2$,根据条件证明即可,
(3)由(2)的结论可得.

解答 解:(1)$f(3)=-\frac{3}{5},f(4)=-\frac{13}{17},f(\frac{1}{3})=\frac{13}{5},f(\frac{1}{4})=\frac{47}{17}$.
(2)猜想:$f(x)+f(\frac{1}{x})=2$.证明如下:
因为$f(x)=\frac{{3-{x^2}}}{{1+{x^2}}}$,所以$f(\frac{1}{x})=\frac{{3-\frac{1}{x^2}}}{{1+\frac{1}{x^2}}}=\frac{{3{x^2}-1}}{{{x^2}+1}}$,
所以$f(x)+f(\frac{1}{x})=\frac{{3-{x^2}}}{{1+{x^2}}}+\frac{{3{x^2}-1}}{{{x^2}+1}}=\frac{{3-{x^2}-1+3{x^2}}}{{1+{x^2}}}=\frac{{2({1+{x^2}})}}{{1+{x^2}}}=2$.
(3)因为$f(x)+f(\frac{1}{x})=2$,
所以$f(2)+f(\frac{1}{2})=2,f(3)+f(\frac{1}{3})=2$,…,$f({2017})+f(\frac{1}{2017})=2$,
又$f(1)+f(\frac{1}{1})=2$,所以f(1)=1,
故$f(1)+f(2)+…+f({2017})+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{2017})$=1+2016×2=4 033.

点评 本题考查了函数值的求法和归纳推理的问题,考查了学生的运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x3-2x+ex-e-x的奇偶性为奇,在R上的增减性为单调递增(填“单调递增”、“单调递减”或“有增有减”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线C:$\left\{\begin{array}{l}{x=2+5cosθ}\\{y=1+5sinθ}\end{array}\right.$(θ为参数)被直线$\left\{\begin{array}{l}{x=-2+4t}\\{y=-1-3t}\end{array}\right.$(t为参数)截得的弦长为(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在边长为2的正方形ABCD的内部随机取一点E,则△ABE的面积大于$\frac{3}{2}$的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一个质点在腰长为4的等腰直角三角形内随机运动,则某时刻该质点距离三角形的三个顶点的距离均超过1的概率为1-$\frac{π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a=2-2,b=log${\;}_{2}^{\frac{1}{3}}$,c=2${\;}^{\frac{1}{3}}$,比较a,b,c的大小(  )
A.a>b>cB.a<b<cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组:{2,4},{6,8,10,12},{14,16,18,20,22,24},…,则2018位于(  )组.
A.30B.31C.32D.33

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上随机取一个数x,cosx的值介于0到$\frac{1}{2}$之间的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.?($\sqrt{x}$-$\frac{1}{2x}$)12的展开式的常数项为$\frac{495}{16}$.

查看答案和解析>>

同步练习册答案