分析 (1)代值计算即可,
(2)猜想:$f(x)+f(\frac{1}{x})=2$,根据条件证明即可,
(3)由(2)的结论可得.
解答 解:(1)$f(3)=-\frac{3}{5},f(4)=-\frac{13}{17},f(\frac{1}{3})=\frac{13}{5},f(\frac{1}{4})=\frac{47}{17}$.
(2)猜想:$f(x)+f(\frac{1}{x})=2$.证明如下:
因为$f(x)=\frac{{3-{x^2}}}{{1+{x^2}}}$,所以$f(\frac{1}{x})=\frac{{3-\frac{1}{x^2}}}{{1+\frac{1}{x^2}}}=\frac{{3{x^2}-1}}{{{x^2}+1}}$,
所以$f(x)+f(\frac{1}{x})=\frac{{3-{x^2}}}{{1+{x^2}}}+\frac{{3{x^2}-1}}{{{x^2}+1}}=\frac{{3-{x^2}-1+3{x^2}}}{{1+{x^2}}}=\frac{{2({1+{x^2}})}}{{1+{x^2}}}=2$.
(3)因为$f(x)+f(\frac{1}{x})=2$,
所以$f(2)+f(\frac{1}{2})=2,f(3)+f(\frac{1}{3})=2$,…,$f({2017})+f(\frac{1}{2017})=2$,
又$f(1)+f(\frac{1}{1})=2$,所以f(1)=1,
故$f(1)+f(2)+…+f({2017})+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{2017})$=1+2016×2=4 033.
点评 本题考查了函数值的求法和归纳推理的问题,考查了学生的运算能力,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a<b<c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 31 | C. | 32 | D. | 33 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{π}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com