精英家教网 > 高中数学 > 题目详情
1.函数f(x)=x3-2x+ex-e-x的奇偶性为奇,在R上的增减性为单调递增(填“单调递增”、“单调递减”或“有增有减”).

分析 根据函数的定义域为R,且满足f(-x)=-f(x),可得函数f(x)为奇函数,再利用导数判断它的单调性.

解答 解:∵函数f(x)=x3-2x+ex-e-x ,∴它的定义域为R,且满足f(-x)=-x3+x+e-x-ex=-f(x),故函数f(x)为奇函数.
由于函数的导数f′(x)=3x2-2+(ex+e-x )≥3x2-2+2=3x2≥0,故函数在R上单调递增,
故答案为:奇;单调递增.

点评 本题主要函数的奇偶性和单调性的判断方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②在刻画回归模型的拟合效果时,相关指数R2的值越大,说明拟合的效果越好;
③设随机变量ξ服从正态分布N(4,22),则p(ξ>4)=$\frac{1}{2}$
④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的把握程度越大.
其中正确的说法是(  )
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果a<b<0,c>d>0,那么一定有(  )
A.$\frac{c}{a}>\frac{d}{b}$B.$\frac{c}{a}<\frac{d}{b}$C.$\frac{c}{b}>\frac{d}{a}$D.$\frac{c}{b}<\frac{d}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x))在区间(0,3)上为单调递增函数,求a的取值范围;
(3)当a=2时,函数h(x)=f(x)-mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.试比较h'(αx1+βx2)与0的关系,并给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标平面内,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ=4sinθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-2\sqrt{3}+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在期中考试中,高三某班50名学生化学成绩的平均分为85分、方差为8.2,该班某位同学知道自己的化学成绩为95,则下列四个数中不可能是该班化学成绩的是(  )
A.65B.75C.90D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(0,$\sqrt{2}$),离心率为$\frac{\sqrt{3}}{3}$.
(1)求椭圆C的方程;
(2)过点P(1,1)分别作斜率为k1、k2的椭圆的动弦AB、CD,设M、N分别为线段AB、CD的中点,若k1+k2=1,是否存在一个定点Q,使得其在直线MN上,若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短轴端点到右焦点F(1,0)的距离为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线交椭圆C于A,B两点,交直线l:x=4于点P,若|PA|=λ1|AF|,|PB|=λ2|BF|,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)计算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的结果猜想一个普遍的结论,并加以证明;
(3)求值f(1)+f(2)+…+f(2017)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2017}$).

查看答案和解析>>

同步练习册答案