·ÖÎö £¨1£©µ±a=2ʱ£¬ÀûÓõ¼ÊýµÄ·ûºÅÇóµÃº¯ÊýµÄµ¥µ÷ÐÔ£¬ÔÙ¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐÔÇóµÃº¯Êýy=f£¨x£©ÔÚ[$\frac{1}{2}$£¬2]ÉϵÄ×î´óÖµ£»
£¨2£©ÏÈÇóµÃg¡ä£¨x£©=$\frac{a}{x}$-2x+a£¬ÒòΪg£¨x£©ÔÚÇø¼ä£¨0£¬3£©Éϵ¥µ÷µÝÔö£¬ËùÒÔg'£¨x£©¡Ý0ÔÚ£¨0£¬3£©ÉϺã³ÉÁ¢£¬ÔËÓòÎÊý·ÖÀëºÍº¯ÊýµÄµ¥µ÷ÐÔ£¬ÇóµÃÓұߺ¯ÊýµÄ·¶Î§£¬Óɴ˿ɵÃaµÄ·¶Î§£»
£¨3£©h¡ä£¨¦Áx1+¦Âx2£©£¼0£®ÀíÓÉ£ºÓÉÌâÒâ¿ÉµÃ£¬f£¨x£©-mx=0ÓÐÁ½¸öʵ¸ùx1£¬x2£¬»¯¼ò¿ÉµÃm=$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$-£¨x1+x2£©£¬¿ÉµÃh'£¨¦Áx1+¦Âx2£©=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$-2£¨¦Áx1+¦Âx2£©-$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$+£¨x1+x2£©=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$--$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$+£¨2¦Á-1£©£¨x2-x1£©£¬ÓÉÌõ¼þÖª£¨2¦Á-1£©£¨x2-x1£©¡Ü0£¬ÔÙÓ÷ÖÎö·¨Ö¤Ã÷h¡ä£¨¦Áx1+¦Âx2£©£¼0£®
½â´ð ½â£º£¨1£©¡ßf£¨x£©=2lnx-x2£¬
¿ÉµÃ$f'£¨x£©=\frac{2}{x}-2x=\frac{{2-2{x^2}}}{x}$£¬
º¯Êýf£¨x£©ÔÚ[$\frac{1}{2}$£¬1]ÊÇÔöº¯Êý£¬ÔÚ[1£¬2]ÊǼõº¯Êý£¬
ËùÒÔf£¨1£©È¡µÃ×î´óÖµ£¬ÇÒΪ-1£»
£¨2£©ÒòΪg£¨x£©=alnx-x2+ax£¬
ËùÒÔg¡ä£¨x£©=$\frac{a}{x}$-2x+a£¬
ÒòΪg£¨x£©ÔÚÇø¼ä£¨0£¬3£©Éϵ¥µ÷µÝÔö£¬
ËùÒÔg'£¨x£©¡Ý0ÔÚ£¨0£¬3£©ÉϺã³ÉÁ¢£¬
¼´ÓÐa¡Ý$\frac{2{x}^{2}}{x+1}$ÔÚ£¨0£¬3£©µÄ×î´óÖµ£¬
ÓÉy=$\frac{2{x}^{2}}{x+1}$µÄµ¼ÊýΪy¡ä=$\frac{2{x}^{2}+4x}{£¨x+1£©^{2}}$£¾0£¬
Ôòº¯Êýy=$\frac{2{x}^{2}}{x+1}$ÔÚ£¨0£¬3£©µÝÔö£¬¿ÉµÃy£¼$\frac{9}{2}$£¬
Ôòa¡Ý$\frac{9}{2}$£»
£¨3£©ÓÉÌâÒâ¿ÉµÃ£¬h¡ä£¨x£©=$\frac{2}{x}$-2x-m£¬
ÓÖf£¨x£©-mx=0ÓÐÁ½¸öʵ¸ùx1£¬x2£¬
¡à2lnx1-x12-mx1=0£¬2lnx2-x22-mx2=0£¬
Á½Ê½Ïà¼õ£¬µÃ2£¨lnx1-lnx2£©-£¨x12-x22£©=m£¨x1-x2£©£¬
¡àm=$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$-£¨x1+x2£©£¬
ÓÚÊÇh'£¨¦Áx1+¦Âx2£©=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$-2£¨¦Áx1+¦Âx2£©-m
=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$-2£¨¦Áx1+¦Âx2£©-$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$+£¨x1+x2£©
=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$--$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$+£¨2¦Á-1£©£¨x2-x1£©£¬
¡ß¦Â¡Ý¦Á£¬¡à2¦Á¡Ü1£¬¡à£¨2¦Á-1£©£¨x2-x1£©¡Ü0£®
¿ÉµÃh¡ä£¨¦Áx1+¦Âx2£©£¼0£®
ÒªÖ¤£ºh¡ä£¨¦Áx1+¦Âx2£©£¼0£¬
Ö»ÐèÖ¤£º$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$-$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0£¬
Ö»ÐèÖ¤£º$\frac{{x}_{1}-{x}_{2}}{¦Á{x}_{1}+¦Â{x}_{2}}$-ln$\frac{{x}_{1}}{{x}_{2}}$£¾0£®£¨*£©
Áî$\frac{{x}_{1}}{{x}_{2}}$=t¡Ê£¨0£¬1£©£¬
¡à£¨*£©»¯Îª$\frac{1-t}{¦Át+¦Â}$+lnt£¼0£¬
Ö»Ö¤u£¨t£©=$\frac{1-t}{¦Át+¦Â}$+lnt¼´¿É£®
¡ßu¡ä£¨t£©=$\frac{1}{t}$+$\frac{-£¨¦Át+¦Â£©-£¨1-t£©¦Á}{£¨¦Át+¦Â£©^{2}}$=$\frac{1}{t}$-$\frac{1}{£¨¦Át+¦Â£©^{2}}$=$\frac{{¦Á}^{2}£¨t-1£©£¨t-\frac{{¦Â}^{2}}{{¦Á}^{2}}£©}{t£¨¦Át+¦Â£©^{2}}$£¬
ÓÖ¡ß$\frac{{¦Â}^{2}}{{¦Á}^{2}}$¡Ý1£¬0£¼t£¼1£¬¡àt-1£¼0£¬¡àu¡ä£¨t£©£¾0£¬
¡àu£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬
¹ÊÓÐ u£¨t£©£¼u£¨1£©=0£¬¡à$\frac{1-t}{¦Át+¦Â}$+lnt£¼0£¬
¼´$\frac{{x}_{1}-{x}_{2}}{¦Á{x}_{1}+¦Â{x}_{2}}$-ln$\frac{{x}_{1}}{{x}_{2}}$£¾0£®
¡àh¡ä£¨¦Áx1+¦Âx2£©£¼0£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔÇóº¯ÊýÔÚ±ÕÇø¼äÉϵÄ×îÖµ£¬Ó÷ÖÎö·¨Ö¤Ã÷²»µÈʽ£¬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -1 | B£® | 0 | C£® | 1 | D£® | ¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6 | B£® | 8 | C£® | 10 | D£® | 12 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ïß¶Î | B£® | Ö±Ïß | C£® | ÉäÏß | D£® | Ô² |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{1}{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com