9£®ÒÑÖªº¯Êýf£¨x£©=alnx-x2£®
£¨1£©µ±a=2ʱ£¬Çóº¯Êýy=f£¨x£©ÔÚ[$\frac{1}{2}$£¬2]ÉϵÄ×î´óÖµ£»
£¨2£©Áîg£¨x£©=f£¨x£©+ax£¬Èôy=g£¨x£©£©ÔÚÇø¼ä£¨0£¬3£©ÉÏΪµ¥µ÷µÝÔöº¯Êý£¬ÇóaµÄȡֵ·¶Î§£»
£¨3£©µ±a=2ʱ£¬º¯Êýh£¨x£©=f£¨x£©-mxµÄͼÏóÓëxÖá½»ÓÚÁ½µãA£¨x1£¬0£©£¬B£¨x2£¬0£©£¬ÇÒ0£¼x1£¼x2£¬ÓÖh¡ä£¨x£©ÊÇh£¨x£©µÄµ¼º¯Êý£®ÈôÕý³£Êý¦Á£¬¦ÂÂú×ãÌõ¼þ¦Á+¦Â=1£¬¦Â¡Ý¦Á£®ÊԱȽÏh'£¨¦Áx1+¦Âx2£©Óë0µÄ¹ØÏµ£¬²¢¸ø³öÀíÓÉ£®

·ÖÎö £¨1£©µ±a=2ʱ£¬ÀûÓõ¼ÊýµÄ·ûºÅÇóµÃº¯ÊýµÄµ¥µ÷ÐÔ£¬ÔÙ¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐÔÇóµÃº¯Êýy=f£¨x£©ÔÚ[$\frac{1}{2}$£¬2]ÉϵÄ×î´óÖµ£»
£¨2£©ÏÈÇóµÃg¡ä£¨x£©=$\frac{a}{x}$-2x+a£¬ÒòΪg£¨x£©ÔÚÇø¼ä£¨0£¬3£©Éϵ¥µ÷µÝÔö£¬ËùÒÔg'£¨x£©¡Ý0ÔÚ£¨0£¬3£©ÉϺã³ÉÁ¢£¬ÔËÓòÎÊý·ÖÀëºÍº¯ÊýµÄµ¥µ÷ÐÔ£¬ÇóµÃÓұߺ¯ÊýµÄ·¶Î§£¬Óɴ˿ɵÃaµÄ·¶Î§£»
£¨3£©h¡ä£¨¦Áx1+¦Âx2£©£¼0£®ÀíÓÉ£ºÓÉÌâÒâ¿ÉµÃ£¬f£¨x£©-mx=0ÓÐÁ½¸öʵ¸ùx1£¬x2£¬»¯¼ò¿ÉµÃm=$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$-£¨x1+x2£©£¬¿ÉµÃh'£¨¦Áx1+¦Âx2£©=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$-2£¨¦Áx1+¦Âx2£©-$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$+£¨x1+x2£©=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$--$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$+£¨2¦Á-1£©£¨x2-x1£©£¬ÓÉÌõ¼þÖª£¨2¦Á-1£©£¨x2-x1£©¡Ü0£¬ÔÙÓ÷ÖÎö·¨Ö¤Ã÷h¡ä£¨¦Áx1+¦Âx2£©£¼0£®

½â´ð ½â£º£¨1£©¡ßf£¨x£©=2lnx-x2£¬
¿ÉµÃ$f'£¨x£©=\frac{2}{x}-2x=\frac{{2-2{x^2}}}{x}$£¬
º¯Êýf£¨x£©ÔÚ[$\frac{1}{2}$£¬1]ÊÇÔöº¯Êý£¬ÔÚ[1£¬2]ÊǼõº¯Êý£¬
ËùÒÔf£¨1£©È¡µÃ×î´óÖµ£¬ÇÒΪ-1£»    
£¨2£©ÒòΪg£¨x£©=alnx-x2+ax£¬
ËùÒÔg¡ä£¨x£©=$\frac{a}{x}$-2x+a£¬
ÒòΪg£¨x£©ÔÚÇø¼ä£¨0£¬3£©Éϵ¥µ÷µÝÔö£¬
ËùÒÔg'£¨x£©¡Ý0ÔÚ£¨0£¬3£©ÉϺã³ÉÁ¢£¬
¼´ÓÐa¡Ý$\frac{2{x}^{2}}{x+1}$ÔÚ£¨0£¬3£©µÄ×î´óÖµ£¬
ÓÉy=$\frac{2{x}^{2}}{x+1}$µÄµ¼ÊýΪy¡ä=$\frac{2{x}^{2}+4x}{£¨x+1£©^{2}}$£¾0£¬
Ôòº¯Êýy=$\frac{2{x}^{2}}{x+1}$ÔÚ£¨0£¬3£©µÝÔö£¬¿ÉµÃy£¼$\frac{9}{2}$£¬
Ôòa¡Ý$\frac{9}{2}$£»
£¨3£©ÓÉÌâÒâ¿ÉµÃ£¬h¡ä£¨x£©=$\frac{2}{x}$-2x-m£¬
ÓÖf£¨x£©-mx=0ÓÐÁ½¸öʵ¸ùx1£¬x2£¬
¡à2lnx1-x12-mx1=0£¬2lnx2-x22-mx2=0£¬
Á½Ê½Ïà¼õ£¬µÃ2£¨lnx1-lnx2£©-£¨x12-x22£©=m£¨x1-x2£©£¬
¡àm=$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$-£¨x1+x2£©£¬
ÓÚÊÇh'£¨¦Áx1+¦Âx2£©=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$-2£¨¦Áx1+¦Âx2£©-m
=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$-2£¨¦Áx1+¦Âx2£©-$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$+£¨x1+x2£©
=$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$--$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$+£¨2¦Á-1£©£¨x2-x1£©£¬
¡ß¦Â¡Ý¦Á£¬¡à2¦Á¡Ü1£¬¡à£¨2¦Á-1£©£¨x2-x1£©¡Ü0£®
¿ÉµÃh¡ä£¨¦Áx1+¦Âx2£©£¼0£®
ÒªÖ¤£ºh¡ä£¨¦Áx1+¦Âx2£©£¼0£¬
Ö»ÐèÖ¤£º$\frac{2}{¦Á{x}_{1}+¦Â{x}_{2}}$-$\frac{2£¨ln{x}_{1}-ln{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0£¬
Ö»ÐèÖ¤£º$\frac{{x}_{1}-{x}_{2}}{¦Á{x}_{1}+¦Â{x}_{2}}$-ln$\frac{{x}_{1}}{{x}_{2}}$£¾0£®£¨*£©  
Áî$\frac{{x}_{1}}{{x}_{2}}$=t¡Ê£¨0£¬1£©£¬
¡à£¨*£©»¯Îª$\frac{1-t}{¦Át+¦Â}$+lnt£¼0£¬
Ö»Ö¤u£¨t£©=$\frac{1-t}{¦Át+¦Â}$+lnt¼´¿É£®
¡ßu¡ä£¨t£©=$\frac{1}{t}$+$\frac{-£¨¦Át+¦Â£©-£¨1-t£©¦Á}{£¨¦Át+¦Â£©^{2}}$=$\frac{1}{t}$-$\frac{1}{£¨¦Át+¦Â£©^{2}}$=$\frac{{¦Á}^{2}£¨t-1£©£¨t-\frac{{¦Â}^{2}}{{¦Á}^{2}}£©}{t£¨¦Át+¦Â£©^{2}}$£¬
ÓÖ¡ß$\frac{{¦Â}^{2}}{{¦Á}^{2}}$¡Ý1£¬0£¼t£¼1£¬¡àt-1£¼0£¬¡àu¡ä£¨t£©£¾0£¬
¡àu£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬
¹ÊÓÐ u£¨t£©£¼u£¨1£©=0£¬¡à$\frac{1-t}{¦Át+¦Â}$+lnt£¼0£¬
¼´$\frac{{x}_{1}-{x}_{2}}{¦Á{x}_{1}+¦Â{x}_{2}}$-ln$\frac{{x}_{1}}{{x}_{2}}$£¾0£®
¡àh¡ä£¨¦Áx1+¦Âx2£©£¼0£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔÇóº¯ÊýÔÚ±ÕÇø¼äÉϵÄ×îÖµ£¬Ó÷ÖÎö·¨Ö¤Ã÷²»µÈʽ£¬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈômÊÇÕýÕûÊý$\int_{-¦Ð}^¦Ð{{{sin}^2}mxdx}$µÄֵΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®£¨A×éÌ⣩ÒÑÖªº¯Êýf£¨x£©Îª¶¨ÒåÔÚ£¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£©ÉϵÄżº¯Êý£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©=lgx£¬º¯Êýg£¨x£©=|sinx|£¬Ôòº¯Êýf£¨x£©Óëg£¨x£©µÄ½»µã¸öÊýΪ£¨¡¡¡¡£©
A£®6B£®8C£®10D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬ÇÒ${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$£¨n=1£¬2£¬3£¬¡­£¬£©
£¨¢ñ£©Çóa2£¬a3£¬a4µÄÖµ£¬²¢²ÂÏë³öÕâ¸öÊýÁеÄͨÏʽ£»
£¨¢ò£©ÇóS=a1a2+a2a3+a3a4+¡­+a7a8µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª²»µÈʽ£¨1-a£©x2-4x+6£¾0µÄ½â¼¯Îª{x|-3£¼x£¼1}£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©Èô²»µÈʽax2+mx+3¡Ý0µÄ½â¼¯ÎªR£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+si{n}^{2}¦È}\\{y=si{n}^{2}¦È}\end{array}\right.$£¨¦ÈÊDzÎÊý£©£¬ÔòÇúÏßCµÄÐÎ×´ÊÇ£¨¡¡¡¡£©
A£®Ïß¶ÎB£®Ö±ÏßC£®ÉäÏßD£®Ô²

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®º¯Êýf£¨x£©=x3-2x+ex-e-xµÄÆæÅ¼ÐÔÎªÆæ£¬ÔÚRÉϵÄÔö¼õÐÔΪµ¥µ÷µÝÔö£¨Ìî¡°µ¥µ÷µÝÔö¡±¡¢¡°µ¥µ÷µÝ¼õ¡±»ò¡°ÓÐÔöÓмõ¡±£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬¹ý×ó½¹µãF1×÷xÖáµÄ´¹Ïß½»ÍÖÔ²CµÄÉÏ·½ÓÚµãA£¬ÇÒ|OA|=$\frac{\sqrt{21}}{3}$£¬ÆäÖУ¬OÎª×ø±êÔ­µã£®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÇóÍÖÔ²CÉϹýµãAµÄÇÐÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èçͼ£¬Ôڱ߳¤Îª2µÄÕý·½ÐÎABCDµÄÄÚ²¿Ëæ»úȡһµãE£¬Ôò¡÷ABEµÄÃæ»ý´óÓÚ$\frac{3}{2}$µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{1}{4}$D£®$\frac{1}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸