精英家教网 > 高中数学 > 题目详情
19.若m是正整数$\int_{-π}^π{{{sin}^2}mxdx}$的值为(  )
A.-1B.0C.1D.π

分析 找出被积函数的原函数,然后计算求值.

解答 解:${∫}_{-π}^{π}$sin2mxdx=$\frac{1}{2}$${∫}_{-π}^{π}$(1-cos2mx)dx=($\frac{1}{2}$x-$\frac{1}{4m}$sin2mx)|${\;}_{-π}^{π}$=π,
故选:D

点评 本题考查了定积分的计算;关键是明确被积函数的原函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知圆C:(x-3)2+(y-4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程.
(2)若l与圆C相交于P、Q两点,若$|PQ|=2\sqrt{2}$,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知${(x+\frac{1}{2x})^5}$的展开式中,x3项的系数是a,则$\int{\begin{array}{l}a\\ 1\end{array}}\frac{1}{x}dx$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某土特产销售总公司为了解其经营状况,调查了其下属各分公司月销售额和利润,得到数据如下表:
分公司名称 雅雨 雅雨 雅女 雅竹 雅茶
 月销售额x(万元) 3 5 6 7 9
 月利润y(万元) 2 3 3 45
在统计中发现月销售额x和月利润额y具有线性相关关系.
(Ⅰ)根据如下的参考公式与参考数据,求月利润y与月销售额x之间的线性回归方程;
(Ⅱ)若该总公司还有一个分公司“雅果”月销售额为10万元,试求估计它的月利润额是多少?(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}•\overrightarrow{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overrightarrow{x}}^{2}}$,$\widehat{a}$=$\overrightarrow{y}$-$\widehat{b}$$\overrightarrow{x}$,其中:$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=112,$\sum_{i=1}^{n}{x}_{i}^{2}$=200).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在数列{an}中,an=(-$\frac{1}{2}$)n,n∈N*,则$\underset{lim}{n→∞}$an(  )
A.等于$-\frac{1}{2}$B.等于0C.等于$\frac{1}{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若曲线C的参数方程为$\left\{{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=2+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),则下列说法正确的是(  )
A.曲线C是直线且过点(-1,2)B.曲线C是直线且斜率为$\frac{{\sqrt{3}}}{3}$
C.曲线C是圆且圆心为(-1,2)D.曲线C是圆且半径为|t|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②在刻画回归模型的拟合效果时,相关指数R2的值越大,说明拟合的效果越好;
③设随机变量ξ服从正态分布N(4,22),则p(ξ>4)=$\frac{1}{2}$
④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的把握程度越大.
其中正确的说法是(  )
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆x2+my2=1的长轴长为4,则其焦点坐标为(  )
A.(±3,0)B.(±1,0)C.(0,±1)D.(0,±$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x))在区间(0,3)上为单调递增函数,求a的取值范围;
(3)当a=2时,函数h(x)=f(x)-mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.试比较h'(αx1+βx2)与0的关系,并给出理由.

查看答案和解析>>

同步练习册答案