精英家教网 > 高中数学 > 题目详情
7.某土特产销售总公司为了解其经营状况,调查了其下属各分公司月销售额和利润,得到数据如下表:
分公司名称 雅雨 雅雨 雅女 雅竹 雅茶
 月销售额x(万元) 3 5 6 7 9
 月利润y(万元) 2 3 3 45
在统计中发现月销售额x和月利润额y具有线性相关关系.
(Ⅰ)根据如下的参考公式与参考数据,求月利润y与月销售额x之间的线性回归方程;
(Ⅱ)若该总公司还有一个分公司“雅果”月销售额为10万元,试求估计它的月利润额是多少?(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}•\overrightarrow{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overrightarrow{x}}^{2}}$,$\widehat{a}$=$\overrightarrow{y}$-$\widehat{b}$$\overrightarrow{x}$,其中:$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=112,$\sum_{i=1}^{n}{x}_{i}^{2}$=200).

分析 (Ⅰ)根据已知数据计算$\overline{x}$、$\overline{y}$,求出回归系数$\widehat{b}$、$\widehat{a}$,写出回归方程;
(Ⅱ)把x=10代入线性回归方程中计算$\stackrel{∧}{y}$的值即可.

解答 解:(Ⅰ)根据已知数据,计算
$\overline{x}$=$\frac{1}{5}$×(3+5+6+7+9)=6,
$\overline{y}$=$\frac{1}{5}$×(2+3+3+4+5)=3.4,
回归系数为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}•\overrightarrow{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overrightarrow{x}}^{2}}$=$\frac{112-5×6×3.4}{200-5×6×6}$=0.5,
$\widehat{a}$=$\overrightarrow{y}$-$\widehat{b}$$\overrightarrow{x}$=3.4-0.5×6=0.4,
∴y与x的线性回归方程为$\stackrel{∧}{y}$=0.5x+0.4;
(Ⅱ)把x=10代入线性回归方程中,
计算$\stackrel{∧}{y}$=0.5x+0.4=0.5×10+0.4=5.4,
∴估计它的月利润额是5.4万元.

点评 本题考查了线性回归方程的计算和应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.$\overrightarrow a$=(3$\sqrt{3}$sinx,$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,$\sqrt{3}$cosx),f (x)=$\overrightarrow a$•$\overrightarrow b$.
(1)求f(x)的单调递减区间;
(2)x∈[-$\frac{π}{3}$,$\frac{π}{3}$]时,g(x)=f(x)+m的最大值为$\frac{11}{2}$,求g(x)的最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}+t}\\{y=3+2t}\end{array}}\right.(t$为参数),以原点o为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为$ρ=2\sqrt{3}cosθ$.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)设直线l与曲线C交于点A,B,若点P的坐标为$P(\sqrt{3},3)$,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点P(4,2)作圆x2+y2+2x-2y+1=0的一条切线,切点为Q,则|PQ|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{a}{x}$+xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)若?x1,x2∈[0,2],使得g(x1)-g(x2)≥M总成立,求M的最大值;
(2)如果对?s,t∈[$\frac{1}{2}$,2],都有f(s)≥eg(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=|ax-1|(a>1)的图象为曲线C,O为坐标原点,若点P为曲线C上任意一点,曲线C上存在点Q,使得OP⊥OQ,则实数a的取值集合是{e}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若m是正整数$\int_{-π}^π{{{sin}^2}mxdx}$的值为(  )
A.-1B.0C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.动点(2-cosθ,cos2θ)的轨迹的普通方程是y=2(x-2)2-1(1≤x≤3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=1,且${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…,)
(Ⅰ)求a2,a3,a4的值,并猜想出这个数列的通项公式;
(Ⅱ)求S=a1a2+a2a3+a3a4+…+a7a8的值.

查看答案和解析>>

同步练习册答案