18£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}+t}\\{y=3+2t}\end{array}}\right.£¨t$Ϊ²ÎÊý£©£¬ÒÔÔ­µãoΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{3}cos¦È$£®
£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌÓëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚµãA£¬B£¬ÈôµãPµÄ×ø±êΪ$P£¨\sqrt{3}£¬3£©$£¬Çó$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$µÄÖµ£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥t£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÄÜÇó³öÔ²CµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈë${£¨x-\sqrt{3}£©^2}+{y^2}=3$ÖУ¬µÃ5t2+12t+6=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨ÀíÄÜÇó³ö$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}+t}\\{y=3+2t}\end{array}}\right.£¨t$Ϊ²ÎÊý£©£¬
¡àÏûÈ¥t£¬µÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ£º$y=2x+3-2\sqrt{3}$£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{3}cos¦È£¬{¦Ñ^2}=2\sqrt{3}¦Ñcos¦È$£¬
¡à${x^2}+{y^2}=2\sqrt{3}x$£¬
¡àÔ²CµÄÖ±½Ç×ø±ê·½³ÌΪ${£¨x-\sqrt{3}£©^2}+{y^2}=3$£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈë${£¨x-\sqrt{3}£©^2}+{y^2}=3$ÖУ¬
ÕûÀí£¬µÃ5t2+12t+6=0
ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
¡ß¡÷£¾0£¬¡à${t_1}+{t_2}=-\frac{12}{5}£¬{t_1}{t_2}=\frac{6}{5}£¨{t_1}£¬{t_2}$ͬºÅ£©
¡à$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=\frac{1}{{\sqrt{5}|{t_1}|}}+\frac{1}{{\sqrt{5}|{t_2}|}}=\frac{{|{{t_1}+{t_2}}|}}{{\sqrt{5}|{{t_1}{t_2}}|}}=\frac{{2\sqrt{5}}}{5}$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏߵįÕͨ·½³Ì¡¢ÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶ε¹ÊýºÍµÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Î¤´ï¶¨ÀíµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑ֪ijÖÇÄÜÊÖ»úÖÆ×÷Íê³ÉÖ®ºó»¹ÐèÒªÒÀ´Îͨ¹ýÈýµÀÑϸñµÄÉóºË³ÌÐò£¬ÒÑÖªµÚÒ»µÀÉóºË¡¢µÚ¶þµÀÉóºË¡¢µÚÈýµÀÉóºËͨ¹ýµÄ¸ÅÂÊ·Ö±ðΪ$\frac{6}{7}$£¬$\frac{5}{6}$£¬$\frac{14}{15}$£¬Ã¿µÀ³ÌÐòÊÇÏ໥¶ÀÁ¢µÄ£¬ÇÒÒ»µ©ÉóºË²»Í¨¹ý¾ÍÍ£Ö¹ÉóºË£¬Ã¿²¿ÊÖ»úÖ»ÓÐÈýµÀ³ÌÐò¶¼Í¨¹ý²ÅÄܳö³§ÏúÊÛ£®
£¨1£©ÇóÉóºË¹ý³ÌÖÐÖ»½øÐÐÁ½µÀ³ÌÐò¾ÍÍ£Ö¹ÉóºËµÄ¸ÅÂÊ£»
£¨2£©ÏÖÓÐ3²¿¸ÃÖÇÄÜÊÖ»ú½øÈëÉóºË£¬¼ÇÕâ3²¿ÊÖ»ú¿ÉÒÔ³ö³§ÏúÊ۵IJ¿ÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔ²C£º£¨x-3£©2+£¨y-4£©2=4£¬Ö±Ïßl¹ý¶¨µãA£¨1£¬0£©£®
£¨1£©ÈôlÓëÔ²CÏàÇУ¬ÇólµÄ·½³Ì£®
£¨2£©ÈôlÓëÔ²CÏཻÓÚP¡¢QÁ½µã£¬Èô$|PQ|=2\sqrt{2}$£¬Çó´ËʱֱÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¶¯µãMµ½¶¨µãF£¨1£¬0£©µÄ¾àÀëÓëµ½¶¨Ö±Ïßx=3µÄ¾àÀëÖ®±ÈΪ$\frac{{\sqrt{3}}}{3}$£®
£¨1£©Ç󶯵ãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÒÑÖªPΪ¶¨Ö±Ïßx=3ÉÏÒ»µã£®
¢Ù¹ýµãF×÷FPµÄ´¹Ïß½»¹ì¼£CÓÚµãG£¨G²»ÔÚyÖáÉÏ£©£¬ÇóÖ¤£ºÖ±ÏßPGÓëOGµÄбÂÊÖ®»ýÊǶ¨Öµ£»
¢ÚÈôµãPµÄ×ø±êΪ£¨3£¬3£©£¬¹ýµãP×÷¶¯Ö±Ïßl½»¹ì¼£CÓÚ²»Í¬Á½µãR¡¢T£¬Ïß¶ÎRTÉϵĵãHÂú×ã$\frac{PR}{PT}=\frac{RH}{HT}$£¬ÇóÖ¤£ºµãHºãÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=x2+2ax+c
£¨1£©Èôf£¨x£©=f£¨-2-x£©£¬f£¨0£©=-4£®Çóf£¨x£©ÔÚ[3£¬+¡Þ£©ÉϵÄ×îСֵ£º
£¨2£©Èô¶ÔÓÚÈÎÒâx¡Ê[1£¬1+a]£¬f£¨x£©£¾$\frac{9}{4}$x-a2+cºã³ÉÁ¢£®ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÆ½ÃæÖ±½ÇϵxOyÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßCµÄ¼«×ø±êΪ¦Ñ=2cos¦È£¬ÇÒÖ±Ïß$l£º\left\{\begin{array}{l}x=m+3t\\ y=4t\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßC½»ÓÚ²»Í¬Á½µãA£¬B£®
£¨1£©ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©ÉèµãM£¨m£¬0£©£¬Èô|MA|•|MB|=1£¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª${£¨x+\frac{1}{2x}£©^5}$µÄÕ¹¿ªÊ½ÖУ¬x3ÏîµÄϵÊýÊÇa£¬Ôò$\int{\begin{array}{l}a\\ 1\end{array}}\frac{1}{x}dx$=$\frac{5}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³ÍÁÌØ²úÏúÊÛ×ܹ«Ë¾ÎªÁ˽âÆä¾­Óª×´¿ö£¬µ÷²éÁËÆäÏÂÊô¸÷·Ö¹«Ë¾ÔÂÏúÊÛ¶îºÍÀûÈ󣬵õ½Êý¾ÝÈçÏÂ±í£º
·Ö¹«Ë¾Ãû³Æ ÑÅÓê ÑÅÓê ÑÅÅ® ÑÅÖñ ÑŲè
 ÔÂÏúÊÛ¶îx£¨ÍòÔª£© 3 5 6 7 9
 ÔÂÀûÈóy£¨ÍòÔª£© 2 3 3 45
ÔÚͳ¼ÆÖз¢ÏÖÔÂÏúÊÛ¶îxºÍÔÂÀûÈó¶îy¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£®
£¨¢ñ£©¸ù¾ÝÈçϵIJο¼¹«Ê½Óë²Î¿¼Êý¾Ý£¬ÇóÔÂÀûÈóyÓëÔÂÏúÊÛ¶îxÖ®¼äµÄÏßÐԻع鷽³Ì£»
£¨¢ò£©Èô¸Ã×ܹ«Ë¾»¹ÓÐÒ»¸ö·Ö¹«Ë¾¡°ÑŹû¡±ÔÂÏúÊÛ¶îΪ10ÍòÔª£¬ÊÔÇó¹À¼ÆËüµÄÔÂÀûÈó¶îÊǶàÉÙ£¿£¨²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}•\overrightarrow{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overrightarrow{x}}^{2}}$£¬$\widehat{a}$=$\overrightarrow{y}$-$\widehat{b}$$\overrightarrow{x}$£¬ÆäÖУº$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=112£¬$\sum_{i=1}^{n}{x}_{i}^{2}$=200£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÍÖÔ²x2+my2=1µÄ³¤Ö᳤Ϊ4£¬ÔòÆä½¹µã×ø±êΪ£¨¡¡¡¡£©
A£®£¨¡À3£¬0£©B£®£¨¡À1£¬0£©C£®£¨0£¬¡À1£©D£®£¨0£¬¡À$\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸