精英家教网 > 高中数学 > 题目详情
10.已知${(x+\frac{1}{2x})^5}$的展开式中,x3项的系数是a,则$\int{\begin{array}{l}a\\ 1\end{array}}\frac{1}{x}dx$=$\frac{5}{2}$.

分析 先求出二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得展开式中的含x3项的系数a的值,再求定积分,可得要求式子的值.

解答 解:${(x+\frac{1}{2x})^5}$的展开式的通项公式为Tr+1=C5r($\frac{1}{2}$)rx5-2r
令5-2r=3则r=1
∴x3的系数为$a=\frac{5}{2}$,
∴${∫}_{1}^{\frac{5}{2}}$$\frac{1}{x}$dx=lnx|${\;}_{1}^{\frac{5}{2}}$=ln$\frac{5}{2}$,
故答案为:ln$\frac{5}{2}$

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求定积分,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,且<$\overrightarrow{a}$,$\overrightarrow{b}$>=120°,则|$\overrightarrow{a}$+$\overline{b}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线${C_1}:\left\{\begin{array}{l}x=2+tcosα\\ y=tsinα\end{array}\right.$(t为参数),圆${C_2}:\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数)
(1)当$α=\frac{π}{6}$时,求C1与C2的交点坐标;
(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点,当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}+t}\\{y=3+2t}\end{array}}\right.(t$为参数),以原点o为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为$ρ=2\sqrt{3}cosθ$.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)设直线l与曲线C交于点A,B,若点P的坐标为$P(\sqrt{3},3)$,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax-(a+1)lnx-a(a>0)
(1)求f(x)的单调区间
(2)当$x=\frac{1}{a}+1$时,证明:$ln({\frac{1}{a}+1})>\frac{1}{1+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点P(4,2)作圆x2+y2+2x-2y+1=0的一条切线,切点为Q,则|PQ|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{a}{x}$+xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)若?x1,x2∈[0,2],使得g(x1)-g(x2)≥M总成立,求M的最大值;
(2)如果对?s,t∈[$\frac{1}{2}$,2],都有f(s)≥eg(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若m是正整数$\int_{-π}^π{{{sin}^2}mxdx}$的值为(  )
A.-1B.0C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(A组题)已知函数f(x)为定义在(-∞,0)∪(0,+∞)上的偶函数,且当x>0时,f(x)=lgx,函数g(x)=|sinx|,则函数f(x)与g(x)的交点个数为(  )
A.6B.8C.10D.12

查看答案和解析>>

同步练习册答案