分析 (1)求出f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间;
(2)当$x=\frac{1}{a}+1$(x>1),即有a=$\frac{1}{x-1}$,可得ln(1+$\frac{1}{a}$)-$\frac{1}{1+a}$=lnx-$\frac{x-1}{x}$,设g(x)=lnx-$\frac{x-1}{x}$,(x>1),求出导数,判断单调性,即可得证.
解答 解:(1)f(x)的定义域是(0,+∞),
f′(x)=a-$\frac{a+1}{x}$=$\frac{ax-(a+1)}{x}$,(a>0),
令f′(x)>0,解得:x>$\frac{a+1}{a}$,
令f′(x)<0,解得:0<x<$\frac{a+1}{a}$,
故f(x)在(0,$\frac{a+1}{a}$)递减,在($\frac{a+1}{a}$,+∞)递增;
(2)证明:当$x=\frac{1}{a}+1$(x>1),即有a=$\frac{1}{x-1}$,
可得ln(1+$\frac{1}{a}$)-$\frac{1}{1+a}$=lnx-$\frac{x-1}{x}$,
设g(x)=lnx-$\frac{x-1}{x}$,(x>1),
导数g′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$>0,
可得g(x)在(1,+∞)递增,
可得g(x)>g(1)=0,
则lnx>$\frac{x-1}{x}$,
即有$ln({\frac{1}{a}+1})>\frac{1}{1+a}$.
点评 本题考查导数的运用:求单调区间,考查不等式的证明,注意运用构造函数和判断单调性,考查推理和运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 愿意做志愿者工作 | 不愿意做志愿者工作 | 合计 | |
| 男大学生 | 610 | ||
| 女大学生 | 90 | ||
| 合计 | 800 |
| P(K2≥K0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| K0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等于$-\frac{1}{2}$ | B. | 等于0 | C. | 等于$\frac{1}{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com