分析 (1)当$α=\frac{π}{6}$时,求出直线C1的普通方程,再求出圆C2的普通方程,联立方程组,能求出C1与C2的交点坐标.
(2)∵直线C1的普通方程为xsinα-ycosα-2sinα=0,从而A点坐标为(sin2α,-cosαsinα),当α变化时,求出P点轨迹的参数方程,由此能求出P点轨迹是圆心为($\frac{1}{4}$,0),半径为$\frac{1}{4}$的圆.
解答 解:(1)当$α=\frac{π}{6}$时,直线C1:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$,t是参数,
消去参数t,得直线C1的普通方程为x-$\sqrt{3}y$-2=0,
圆${C_2}:\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),
消去参数θ,得圆C2的普通方程为x2+y2=4,
联立$\left\{\begin{array}{l}{x-\sqrt{3}y-2=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-\sqrt{3}}\end{array}\right.$,
∴C1与C2的交点坐标为(2,0),(-1,-$\sqrt{3}$).
(2)∵直线${C_1}:\left\{\begin{array}{l}x=2+tcosα\\ y=tsinα\end{array}\right.$(t为参数),
∴C1的普通方程为xsinα-ycosα-2sinα=0,
∵过坐标原点O作C1的垂线,垂足为A,∴A点坐标为(sin2α,-cosαsinα),
∵P为OA的中点,当α变化时,P点轨迹的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}si{n}^{2}α}\\{y=-\frac{1}{2}sinαcosα}\end{array}\right.$,(α为参数).
∴P点轨迹的普通方程为(x-$\frac{1}{4}$)2+y2=$\frac{1}{16}$.
故P点轨迹是圆心为($\frac{1}{4}$,0),半径为$\frac{1}{4}$的圆.
点评 求曲线的轨迹方程是解析几何的基本问题.本题利用的是参数法,参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com