精英家教网 > 高中数学 > 题目详情
17.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,且<$\overrightarrow{a}$,$\overrightarrow{b}$>=120°,则|$\overrightarrow{a}$+$\overline{b}$|=$\sqrt{13}$.

分析 先计算$\overrightarrow{a}•\overrightarrow{b}$,再计算($\overrightarrow{a}+\overrightarrow{b}$)2,开方即可得出答案.

解答 解:$\overrightarrow{a}•\overrightarrow{b}$=3×4×cos120°=-6,
∴($\overrightarrow{a}+\overrightarrow{b}$)2=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=9-12+16=13,
∴|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{13}$.
故答案为:$\sqrt{13}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆P过A(-8,0),B(2,0),C(0,4)三点,圆Q:x2+y2-2ay+a2-4=0.
(1)求圆P的方程;
(2)如果圆P和圆Q相外切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{5-i}{1+i}$(i是虚数单位)的在复平面上对应的点位于第         象限(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,已知第一道审核、第二道审核、第三道审核通过的概率分别为$\frac{6}{7}$,$\frac{5}{6}$,$\frac{14}{15}$,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.
(1)求审核过程中只进行两道程序就停止审核的概率;
(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作不愿意做志愿者工作合计
男大学生610
女大学生90
合计800
(1)根据题意完成表格;
(2)是否有95%的把握认为愿意做志愿者工作与性别有关?
参考公式及数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.250.150.100.050.025
K01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A,B,且$∠AOB=\frac{π}{2}$,求k的值;
(2)若$k=\frac{1}{2}$,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点分别为C,D,求证:直线CD过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AD=DC=$\sqrt{2}$,AB=PA=2$\sqrt{2}$,且E为线段PB上的一动点.
(1)若E为线段PB的中点,求证:CE∥平面PAD;
(2)当直线CE与平面PAC所成角小于$\frac{π}{3}$,求PE长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:(x-3)2+(y-4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程.
(2)若l与圆C相交于P、Q两点,若$|PQ|=2\sqrt{2}$,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知${(x+\frac{1}{2x})^5}$的展开式中,x3项的系数是a,则$\int{\begin{array}{l}a\\ 1\end{array}}\frac{1}{x}dx$=$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案