精英家教网 > 高中数学 > 题目详情
14.曲线C的参数方程为$\left\{\begin{array}{l}{x=2+si{n}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ是参数),则曲线C的形状是(  )
A.线段B.直线C.射线D.

分析 曲线C的参数方程消去参数,能求出普通方程,由经能判断曲线C的形状.

解答 解:∵曲线C的参数方程为$\left\{\begin{array}{l}{x=2+si{n}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ是参数),
∴x=2+y,即x-y-2=0,且0≤y≤1,2≤x≤3.
∴曲线C的形状是线段.
故选:A.

点评 本题考查曲线的形状的判断,考查参数方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若曲线C的参数方程为$\left\{{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=2+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),则下列说法正确的是(  )
A.曲线C是直线且过点(-1,2)B.曲线C是直线且斜率为$\frac{{\sqrt{3}}}{3}$
C.曲线C是圆且圆心为(-1,2)D.曲线C是圆且半径为|t|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组
的频率之比为1:2:3,第1小组的频数为6,则报考飞行员的学生人数是(  )
A.32B.40C.48D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x,y满足如图所示的可行域(阴影部分),则$z=\frac{1}{2}x-y$的最大值为(  )
A.$\frac{1}{2}$B.0C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x))在区间(0,3)上为单调递增函数,求a的取值范围;
(3)当a=2时,函数h(x)=f(x)-mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.试比较h'(αx1+βx2)与0的关系,并给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=2x2+bx+c,不等式f(x)<0的解集为(0,5).
(1)求b,c的值;
(2)若对任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在期中考试中,高三某班50名学生化学成绩的平均分为85分、方差为8.2,该班某位同学知道自己的化学成绩为95,则下列四个数中不可能是该班化学成绩的是(  )
A.65B.75C.90D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴长为2,焦距是短轴的$\sqrt{2}$倍.
(1)求椭圆的方程;
(2)若直线y=kx+2( k≠0)与椭圆交于C、D两点,|CD|=$\frac{{6\sqrt{2}}}{5}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若实数a,b满足$\frac{1}{a^2}+\frac{1}{b^2}=ab$,则ab的最小值为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

同步练习册答案