精英家教网 > 高中数学 > 题目详情
15.若实数a,b满足$\frac{1}{a^2}+\frac{1}{b^2}=ab$,则ab的最小值为(  )
A.1B.$\sqrt{2}$C.2D.4

分析 求出a3b3=a2+b2,根据基本不等式的性质求出ab的最小值即可.

解答 解:∵$\frac{1}{a^2}+\frac{1}{b^2}=ab$,
∴a3b3=a2+b2≥2ab,
∴ab(a2b2-2)≥0,
∴ab≥$\sqrt{2}$,当且仅当a=b时“=”成立,
故选:B.

点评 本题考查了基本不等式的性质,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.曲线C的参数方程为$\left\{\begin{array}{l}{x=2+si{n}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ是参数),则曲线C的形状是(  )
A.线段B.直线C.射线D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知二项式(ax+1)7展开式的各项系数和为128,(ax+1)7=a0+a1(ax+3)+a2(ax+3)2+…+a7(ax+3)7,则a4=-280.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|2x-1|-|x+1|
(Ⅰ)解不等式f(x)>2x-1;
(Ⅱ)若存在实数x,使得不等式f(x)≤$\frac{{t}^{2}}{2}$-t-3成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在边长为2的正方形ABCD的内部随机取一点E,则△ABE的面积大于$\frac{3}{2}$的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若(3x-1)5=a0+a1x+a2x2+…+a5x5,则a1+a2+a3+a4+a5=(  )
A.-1B.31C.32D.33

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a=2-2,b=log${\;}_{2}^{\frac{1}{3}}$,c=2${\;}^{\frac{1}{3}}$,比较a,b,c的大小(  )
A.a>b>cB.a<b<cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数a、b满足条件a>b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a2>b2C.ab>b2D.a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥中,AB∥CD,BC⊥CD侧面SAB为等边三角形,AB=BC=2,CD=SD=1.
(1)证明:SD⊥平面SAB;
(2)求二面角A-SB-C的平面角的正弦值.

查看答案和解析>>

同步练习册答案