分析 先求出a=1,从而(x+1)7=a0+a1(x+3)+a2(x+3)2+…+a7(x+3)7=[(x+3)-2]7,再由${T}_{r+1}={C}_{7}^{r}(x+3)^{7-r}(-2)^{r}$,令7-r=4,得r=3,由此能求出结果.
解答 解:∵二项式(ax+1)7展开式的各项系数和为128,
∴(a+1)7=128,解得a=1,
∵(ax+1)7=a0+a1(ax+3)+a2(ax+3)2+…+a7(ax+3)7,
∴(x+1)7=a0+a1(x+3)+a2(x+3)2+…+a7(x+3)7=[(x+3)-2]7,
${T}_{r+1}={C}_{7}^{r}(x+3)^{7-r}(-2)^{r}$,
由7-r=4,得r=3,
∴${a}_{4}=(-2)^{3}{C}_{7}^{3}$=-280.
故答案为:-280.
点评 本题考查二项式展开式的系数的求法,考查二项式定理、通项公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 32 | B. | 40 | C. | 48 | D. | 56 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 65 | B. | 75 | C. | 90 | D. | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2<b2 | B. | ab<b2 | C. | ab>a2 | D. | $a-\frac{1}{a}<b-\frac{1}{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 产量x(千件) | 2 | 3 | 5 | 6 |
| 成本y(万元) | 7 | 8 | 9 | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com