精英家教网 > 高中数学 > 题目详情
11.若a<b<0,则下列不等式成立的是(  )
A.a2<b2B.ab<b2C.ab>a2D.$a-\frac{1}{a}<b-\frac{1}{b}$

分析 根据不等式的性质即可判断

解答 解:对于A:当a<b<0,则a2>b2,故A不对,
对于B:当a<b<0,则ab>b2,故B不对,
对于C:当a<b<0,则ab<a2,故C不对,
对于D:当a<b<0,则-$\frac{1}{a}$<-$\frac{1}{b}$,则a-$\frac{1}{a}$<b-$\frac{1}{b}$,故正确
故选:D.

点评 本题考查了不等式得性质,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设实数x、y满足2x+y=9.
(1)若|8-y|≤x+3,求x的取值范围;
(2)若x>0,y>0,求证:$\frac{x+8y}{2xy}$≥$\frac{25}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(a)=cos2θ+acosθ-a(a∈[1,2],θ∈[$\frac{π}{6}$,$\frac{π}{3}$])的最小值是$\frac{1-2a}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)满足$f(x+\frac{π}{2})=-f(x)$,若其图象向左平移$\frac{π}{6}$个单位后得到的函数为奇函数,则f(x)的解析式可以为(  )
A.$f(x)=sin(2x+\frac{π}{6})$B.$f(x)=sin(2x-\frac{π}{6})$C.$f(x)=sin(2x+\frac{π}{3})$D.$f(x)=sin(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知二项式(ax+1)7展开式的各项系数和为128,(ax+1)7=a0+a1(ax+3)+a2(ax+3)2+…+a7(ax+3)7,则a4=-280.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把数列{2n+1}(n∈N*)依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…循环,分别:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…,则第120个括号内各数之和为(  )
A.2312B.2392C.2472D.2544

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|2x-1|-|x+1|
(Ⅰ)解不等式f(x)>2x-1;
(Ⅱ)若存在实数x,使得不等式f(x)≤$\frac{{t}^{2}}{2}$-t-3成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若(3x-1)5=a0+a1x+a2x2+…+a5x5,则a1+a2+a3+a4+a5=(  )
A.-1B.31C.32D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足|x-3|≤1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案