精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=|2x-1|-|x+1|
(Ⅰ)解不等式f(x)>2x-1;
(Ⅱ)若存在实数x,使得不等式f(x)≤$\frac{{t}^{2}}{2}$-t-3成立,求t的取值范围.

分析 (Ⅰ)通过讨论x的范围求出不等式的解集即可;(Ⅱ)求出f(x)的最小值,问题转化为关于t的不等式,解出即可.

解答 解:(Ⅰ)f(x)=$\left\{\begin{array}{l}{-x+2,x<-1}\\{-3x,-1≤x≤\frac{1}{2}}\\{x-2,x≥\frac{1}{2}}\end{array}\right.$,
所以f(x)>2x-1?$\left\{\begin{array}{l}{x<-1}\\{-x+2>2x-1}\end{array}\right.$或$\left\{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{-3x>2x-1}\end{array}\right.$或$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{x-2>2x-1}\end{array}\right.$,
解得x<-1或-1≤x<$\frac{1}{5}$,
所以原不等式解解为{x|x<$\frac{1}{5}$};
(Ⅱ)依题意可知,f(x)min≤$\frac{{t}^{2}}{2}$-t-3,
由(Ⅰ)可知连续函数f(x)在(-∞,-1)和[-1,$\frac{1}{2}$]上是减函数,在($\frac{1}{2}$,+∞)上是增函数,
所以f(x)min=f($\frac{1}{2}$)=-$\frac{3}{2}$,
所以$\frac{{t}^{2}}{2}$-t-3≥-$\frac{3}{2}$及t2-2t-3≥0,
解得t的取值范围为{t|t≤-3或t≥1}.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设x,y满足如图所示的可行域(阴影部分),则$z=\frac{1}{2}x-y$的最大值为(  )
A.$\frac{1}{2}$B.0C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴长为2,焦距是短轴的$\sqrt{2}$倍.
(1)求椭圆的方程;
(2)若直线y=kx+2( k≠0)与椭圆交于C、D两点,|CD|=$\frac{{6\sqrt{2}}}{5}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a<b<0,则下列不等式成立的是(  )
A.a2<b2B.ab<b2C.ab>a2D.$a-\frac{1}{a}<b-\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某工厂为了对新研发的一种产品进行合理定价,随机抽取了6个试销售数据,得到第i个销售单价xi(单位:元)与销售yi(单位:件)的数据资料,算得$\sum_{i=1}^6{{x_i}=51,}\sum_{i=1}^6{{y_i}=480,}\sum_{i=1}^6{{x_i}{y_i}=4066,}\sum_{i=1}^6{{x_i}^2=434.2.}$
(1)求回归直线方程$\hat y=\hat bx+\hat a$;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
附:回归直线方程$\hat y=\hat bx+\hat a$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$是样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设an=-n2+9n+10,则数列{an}前n项和最大时n的值为(  )
A.9B.10C.9或10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若实数a,b满足$\frac{1}{a^2}+\frac{1}{b^2}=ab$,则ab的最小值为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为∅;命题q:函数f(x)=(4a2+7a-1)x是增函数,若¬p∧q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,四棱锥P-ABCD,平面PAB⊥平面ABCD,底面ABCD是正方形.点M是棱PC的中点.
(1)求证:PB⊥CB.
(2)记平面ADM与平面PBC的交线是l,试判断直线l与BC的位置关系,并加以证明.
(3)若CD的中点是E,平面PAB上的动点F满足EF∥平面ADM,求在△PAB内满足条件的所有的点F构成的图形.

查看答案和解析>>

同步练习册答案