分析 (1)取AB的中点E,连结DE,SE,则四边形BCDE为矩形,推导出SD⊥SA,SD⊥SE,由此能证明SD⊥平面SAB.
(2)过点S作SG⊥DE于G,推导出AB⊥平面SDE,从而平面SDE⊥平面ABCD,进而SG⊥平面ABCD,过点A作AH⊥平面SBC于H,取SB中点F,连结AF,FH,则∠AFH为二面角A-SB-C的平面角,由此能求出二面角A-SB-C的平面角的正弦值.
解答 证明:(1)取AB的中点E,连结DE,SE,则四边形BCDE为矩形.![]()
即DE=CB=2,AD=$\sqrt{D{E}^{2}+A{E}^{2}}$=$\sqrt{5}$,
∵侧面SAB为等边三角形,∴SA=SB=AB=2,且SE=$\sqrt{3}$,
又∵SD=1,∴SA2+SD2=AD2,SE2+SD2=ED2,
∴SD⊥SA,SD⊥SE,而SA?面SAB,SE?面SAB,SA∩SE=S,
∴SD⊥平面SAB.------(5分)
解:(2)过点S作SG⊥DE于G,
∵AB⊥SE,AB⊥DE,SE∩DE=E,∴AB⊥平面SDE,
又∵AB⊥平面ABCD,∴平面SDE⊥平面ABCD,
由平面与平面垂直的性质,知SG⊥平面ABCD,
在Rt△DSE中,由SD•SE=DE•SG,得1×$\sqrt{3}$=2×SG,∴SG=$\frac{\sqrt{3}}{2}$.
过点A作AH⊥平面SBC于H,取SB中点F,连结AF,FH,
则∠AFH为二面角A-SB-C的平面角,
∵CD∥AB,AB⊥平面SDE,∴CD⊥平面SDE,∴CD⊥SD,
在Rt△CDS中,由CD=SD=1,得SC=$\sqrt{2}$.
在△SBC中,SB=BC=2,SC=$\sqrt{2}$,
∴${S}_{△SBC}=\frac{1}{2}×\sqrt{2}×\sqrt{{2}^{2}-(\frac{\sqrt{2}}{2})^{2}}$=$\frac{\sqrt{7}}{2}$.
由VA-SBC=VS-ABC,得$\frac{1}{3}{S}_{△SBC}•AH=\frac{1}{3}{S}_{△ABC}•SG$,
即$\frac{1}{3}×\frac{\sqrt{7}}{2}×AH=\frac{1}{3}×\frac{1}{2}×2×2\sqrt{2}$,解得AH=$\frac{2\sqrt{21}}{7}$,
∴sin∠AFH=$\frac{AH}{AF}$=$\frac{2\sqrt{21}}{7\sqrt{3}}$=$\frac{2\sqrt{7}}{7}$,
∴二面角A-SB-C的平面角的正弦值为$\frac{2\sqrt{7}}{7}$.---(12分)
点评 本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 产量x(千件) | 2 | 3 | 5 | 6 |
| 成本y(万元) | 7 | 8 | 9 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{π}{4},\frac{3π}{4}}]$ | B. | $[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$ | C. | $[{0,\frac{π}{4}}]$ | D. | $[{\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1200 | B. | 1280 | C. | 3528 | D. | 3612 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 双曲线的一支 | B. | 抛物线的一部分 | C. | 圆 | D. | 椭圆 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π;x=kπ+$\frac{π}{12}$,k∈Z | B. | 2π;x=kπ+$\frac{π}{6}$,k∈Z | ||
| C. | π;x=$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈Z | D. | π;x=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com