| A. | 2π;x=kπ+$\frac{π}{12}$,k∈Z | B. | 2π;x=kπ+$\frac{π}{6}$,k∈Z | ||
| C. | π;x=$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈Z | D. | π;x=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z |
分析 利用诱导公式、二倍角的正弦公式化简函数的解析式,再利用正弦函数的周期性、以及图象的对称,得出结论.
解答 解:f (x)=-sin(x+$\frac{π}{6}$) sin(x-$\frac{π}{3}$)=-cos($\frac{π}{3}$-x)sin(x-$\frac{π}{3}$)=-sin(x-$\frac{π}{3}$)cos(x-$\frac{π}{3}$)=-$\frac{1}{2}$sin(2x-$\frac{2π}{3}$),
它的最小正周期为$\frac{2π}{2}$=π.
令2x-$\frac{2π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{7π}{12}$,k∈Z,
即x=$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈Z,
故选:C.
点评 本题主要考查诱导公式、二倍角的正弦公式的应用,正弦函数的周期性、以及图象的对称性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“?x∈R,使得x2-1<0”的否定是:?x∈R,均有x2-1<0 | |
| B. | 命题“若x=3,则x2-2x-3=0”的否命题是:若x≠3,则x2-2x-3≠0 | |
| C. | “$α=2kπ+\frac{π}{3}(k∈Z)$”是“$sin2α=\frac{{\sqrt{3}}}{2}$”的必要而不充分条件 | |
| D. | 命题“cosx=cosy,则x=y”的逆否命题是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m<n | |
| B. | m=n | |
| C. | m>n | |
| D. | m,n的大小关系不确定,与a,b的取值有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com