精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,在区间(1,4)上任取一个数为|$\overrightarrow{b}$|,则(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{a}$<0的概率为$\frac{4}{9}$.

分析 首先求出(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{a}$<0的|$\overrightarrow{b}$|的范围,然后利用区间长度比求概率.

解答 解:由已知,向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,所以(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{a}$<0即2×${\overrightarrow{a}}^{2}-3|\overrightarrow{a}||\overrightarrow{b}|cos60°$<0,所以|$\overrightarrow{b}$|$>\frac{8}{3}$,
所以在区间(1,4)上任取一个数为|$\overrightarrow{b}$|,则(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{a}$<0的概率为:$\frac{4-\frac{8}{3}}{4-1}=\frac{\frac{4}{3}}{3}=\frac{4}{9}$;
故答案为:$\frac{4}{9}$.

点评 本题考查了几何概型的概率求法;求出|$\overrightarrow{b}$|的范围,利用区间长度比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.直线x-ysinθ+1=0的倾斜角的取值范围是(  )
A.$[{\frac{π}{4},\frac{3π}{4}}]$B.$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$C.$[{0,\frac{π}{4}}]$D.$[{\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,其共轭复数为$\overline z$,求$|\frac{1}{z}|+{(\overline z)^2}$;
(Ⅱ)设集合A={y|$y={x^2}-2x+\frac{1}{2}$},B={x|m+x2≤1,m<1}.命题p:x∈A;命题q:x∈B.若p是q的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,若复数z满足:z(1-i)=2,则复数z=(  )
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知${(2\sqrt{x}-\frac{1}{2x})^n}$的展开式中二项式系数和为64,则n=6,该展开式中常数项为60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.f (x)=-sin(x+$\frac{π}{6}$) sin(x-$\frac{π}{3}$)的最小正周期和一条对称轴方程为(  )
A.2π;x=kπ+$\frac{π}{12}$,k∈ZB.2π;x=kπ+$\frac{π}{6}$,k∈Z
C.π;x=$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈ZD.π;x=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=2x(1-x),则f(-$\frac{5}{2}$)+f(1)=(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(x-1)ex-$\frac{1}{2}a{x^2}$+1,a∈R.
(1)当a=1时,证明:xf(x)≥0;
(2)若f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2x-sin2x+$\frac{1}{2}$,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边a=$\sqrt{19}$,角B所对边b=5,若f(A)=0,求△ABC的面积.

查看答案和解析>>

同步练习册答案