精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=2x(1-x),则f(-$\frac{5}{2}$)+f(1)=(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 利用函数的奇偶性和周期性求得f(-$\frac{5}{2}$)、f(1)的值,可得f(-$\frac{5}{2}$)+f(1)的值.

解答 解:函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=2x(1-x),
∴f(-$\frac{5}{2}$)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-2•$\frac{1}{2}$(1-$\frac{1}{2}$)=-$\frac{1}{2}$,
∴f(1)=f(1-2)=f(-1)=-f(1),∴f(1)=0,
则f(-$\frac{5}{2}$)+f(1)=-$\frac{1}{2}$+0=-$\frac{1}{2}$,
故选:A.

点评 本题主要考查周期函数的定义,奇函数的定义,学会这种将自变量的值转化到函数解析式f(x)所在区间上的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.?($\sqrt{x}$-$\frac{1}{2x}$)12的展开式的常数项为$\frac{495}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a,b∈R,则使得a>b成立的一个必要不充分条件为(  )
A.|a|>|b|B.a>b+1C.a>b-1D.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,在区间(1,4)上任取一个数为|$\overrightarrow{b}$|,则(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{a}$<0的概率为$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若 sinα+cosα=$\frac{{2\sqrt{3}}}{3}$,α为锐角,则$\frac{1+tanα}{sin2α-cos2α+1}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$sin(\frac{π}{3}-\frac{α}{2})=-\frac{{\sqrt{3}}}{2}$,则$cos(\frac{π}{3}+α)$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的函数f(x)的导函数为f′(x),f(x)+f′(x)=x,f(1)=1,则f(x)的零点个数为(  )
A.0B.1C.2D.至少3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知c>0且c≠1,命题p:指数函数y=(2c-1)x在R上为减函数,q:不等式x+(x-2c)2>1的解集为R.若p∧q为假命题,p∨q为真命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.现有2名男生和3名女生.
(Ⅰ)若其中2名男生必须相邻排在一起,则这5人站成一排,共有多少种不同的排法?
(Ⅱ)若男生甲既不能站排头,也不能站排尾,这5人站成一排,共有多少种不同的排法?

查看答案和解析>>

同步练习册答案