精英家教网 > 高中数学 > 题目详情
16.直线l过点A(2,3),且横截距与纵截距相等,则直线l的方程为3x-2y=0或x+y-5=0.

分析 当横截距a=0时,纵截距b=0,此时直线过A(2,3)和原点(0,0),利用两点式方程能求出直线l的方程;横截距a≠0时,纵截距b=a,设直线l的方程为$\frac{x}{a}+\frac{y}{a}=1$,再把A(2,3)代入,能求出直线l的方程.

解答 解:∵直线l过点A(2,3),且横截距与纵截距相等,
∴当横截距a=0时,纵截距b=0,此时直线过A(2,3)和原点(0,0),
∴直线l的方程为$\frac{y}{x}=\frac{3}{2}$,即3x-2y=0;
横截距a≠0时,纵截距b=a,
设直线l的方程为$\frac{x}{a}+\frac{y}{a}=1$,
把A(2,3)代入,得:$\frac{2}{a}+\frac{3}{a}=1$,解得a=5,
∴$\frac{x}{5}+\frac{y}{5}$=1,即x+y-5=0.
∴直线l的方程为:3x-2y=0或x+y-5=0.
故答案为:3x-2y=0或x+y-5=0.

点评 本题考查直线方程的求法,考查两点式方程、截距式方程等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.f (x)=-sin(x+$\frac{π}{6}$) sin(x-$\frac{π}{3}$)的最小正周期和一条对称轴方程为(  )
A.2π;x=kπ+$\frac{π}{12}$,k∈ZB.2π;x=kπ+$\frac{π}{6}$,k∈Z
C.π;x=$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈ZD.π;x=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将(2x2-x+1)8展开且合并同类项之后的式子中x5的系数是-1288.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)是定义在R上的周期为4的奇函数,当0<x<2时,f(x)=2x,则 f(-$\frac{9}{2}$)+f(4)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2x-sin2x+$\frac{1}{2}$,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边a=$\sqrt{19}$,角B所对边b=5,若f(A)=0,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设命题p:若x,y∈R,x=y,$\frac{x}{y}$=1;命题q:若函数f(x)=ex,则对任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立.在命题①p∧q,②p∨q,③p∧¬q,④¬p∨q中,是真命题的是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$cos(α-\frac{π}{4})=-\frac{1}{3}$,则sin(-3π+2α)=(  )
A.$\frac{7}{9}$B.$-\frac{7}{9}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)={x^3}-\frac{9}{2}{x^2}+6x-a$.
(1)对任意实数x,f'(x)≥m恒成立,求m的最大值;
(2)若函数f(x)恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,则实数a的取值范围为(-∞,-2).

查看答案和解析>>

同步练习册答案