精英家教网 > 高中数学 > 题目详情
6.若函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,则实数a的取值范围为(-∞,-2).

分析 求出函数的导数,问题转化为存在x∈(1,+∞)使得2x2+a<0,求出a的范围即可.

解答 解:f′(x)=2x+$\frac{a}{x}$=$\frac{{2x}^{2}+a}{x}$,
若f(x)在区间(1,+∞)上存在极小值,
则f′(x)在区间(1,+∞)上先小于0,再大于0,
x→+∞时,显然大于0,
故只需存在x∈(1,+∞)使得2x2+a<0,
即a<(-2x2max
故a<-2,
故答案为:(-∞,-2).

点评 本题考查了函数的极值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.直线l过点A(2,3),且横截距与纵截距相等,则直线l的方程为3x-2y=0或x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知随机变量ξ的取值为不大于n的非负整数值,它的分布列为:
ξ012n
Pp0p1p2pn
其中pi(i=0,1,2,…,n)满足:pi∈[0,1],且p0+p1+p2+…+pn=1.
定义由ξ生成的函数f(x)=p0+p1x+p2x2+…+pnxn,令g(x)=f′(x).
(I)若由ξ生成的函数f(x)=$\frac{1}{4}$x+$\frac{1}{2}$x2+$\frac{1}{4}$x3,求P(ξ=2)的值;
(II)求证:随机变量ξ的数学期望E(ξ)=g(1),ξ的方差D(ξ)=g′(1)+g(1)-(g(1))2;(D(ξ)=$\sum_{i=0}^{n}$(i-E(ξ))2•pi
(Ⅲ)现投掷一枚骰子两次,随机变量ξ表示两次掷出的点数之和,此时由ξ生成的函数记为h(x),求h(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合A={x|1<2x<8},B={x|$\frac{6}{x-4}$+1<0},C={x|a<x<a+1}.
(1)求集合∁UA∩B;
(2)若B∪C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等比数列{an}中,a2=1,a4=2,则a6=(  )
A.$2\sqrt{2}$B.4C.$4\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(x2-x-5)ex,g(x)=tx2+ex-4e2(t∈R)(其中e为自然对数的底数).
(1)求函数f(x)的单调区间与极值;
(2)是否存在t<0,对任意的x1∈R,任意的x2∈(0,+∞),都有f(x1)>g(x2)?若存在,求出t的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.13πB.16πC.17πD.21π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至4月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期昼夜温差x(℃)就诊人数y(人)
1月10日1125
2月10日1329
3月10日1226
4月10日816
(1)请根据1至4月份的数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a;
(2)根据线性回归方程,估计昼夜温差为14℃时,就诊人数为多少人?
(参考公式:b=$\frac{\sum_{i=1}^{4}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{4}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点O(1,0)作函数f(x)=ex的切线,则切线方程为(  )
A.y=e2(x-1)B.y=e(x-1)C.y=e2(x-1)或y=e(x-1)D.y=x-1

查看答案和解析>>

同步练习册答案