精英家教网 > 高中数学 > 题目详情
1.设命题p:若x,y∈R,x=y,$\frac{x}{y}$=1;命题q:若函数f(x)=ex,则对任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立.在命题①p∧q,②p∨q,③p∧¬q,④¬p∨q中,是真命题的是(  )
A.①③B.①④C.②③D.②④

分析 命题p:y=0时,$\frac{x}{y}$=1不成立,即可判断出真假;命题q:由于函数f(x)在R上单调递增,即可判断出真假.再利用复合命题真假的判定方法即可得出.

解答 解:命题p:若x,y∈R,x=y,则 $\frac{x}{y}$=1,y=0时不成立,因此是假命题;
命题q:若函数f(x)=ex,由于函数f(x)在R上单调递增,
则对任意x1≠x2都有 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$>0成立,是真命题.
因此在命题①p∧q; ②p∨q; ③p∧(¬q); ④(¬p)∨q中,
真命题是②④.
故选:D.

点评 本题考查了复合命题真假的判定方法、函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设数列{an}满足a1=2,${a_{n+1}}-{a_n}={2^n}$;数列{bn}的前n项和为Sn,且${S_n}=\frac{1}{2}(3{n^2}-n)$.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)把数列{an}和{bn}的公共项从小到大排成新数列{cn},试写出c1,c2,并证明{cn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知研究x与y之间关系的一组数据如表所示:
x01234
y13.55.578
则y对x的回归直线方程$\stackrel{∧}{y}$=bx+a必过点(  )
A.(1,4)B.(2,5)C.(3,7)D.(4,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知球的体积为36π,则该球主视图的面积等于9π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l过点A(2,3),且横截距与纵截距相等,则直线l的方程为3x-2y=0或x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各个角中与2017°终边相同的是(  )
A.-147°B.677°C.317°D.217°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数$y={log_2}({x^2}+\frac{2}{3}bx+\frac{c}{3})$的单调递减区间是(  )
A.(-∞,-2)B.(-∞,1)C.(-2,4)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在极坐标系中,点(2,$\frac{π}{3}$)到直线ρcosθ=2的距离为(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(x2-x-5)ex,g(x)=tx2+ex-4e2(t∈R)(其中e为自然对数的底数).
(1)求函数f(x)的单调区间与极值;
(2)是否存在t<0,对任意的x1∈R,任意的x2∈(0,+∞),都有f(x1)>g(x2)?若存在,求出t的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案