精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数$y={log_2}({x^2}+\frac{2}{3}bx+\frac{c}{3})$的单调递减区间是(  )
A.(-∞,-2)B.(-∞,1)C.(-2,4)D.(1,+∞)

分析 求出原函数的导函数,由图象得到f′(-2)=f(3)=0,联立求得b,c的值,由g(x)>0求得x的范围,再由二次函数的性质求出函数g(x)的减区间,则函数y的单调递减区间可求.

解答 解:∵f(x)=x3+bx2+cx+d,∴f′(x)=3x2+2bx+c,∴$\left\{\begin{array}{l}{1-4b+c=0}\\{27+6b+c=0}\end{array}\right.$,
由图可知f′(-2)=f(3)=0,∴解得$\left\{\begin{array}{l}{b=-\frac{3}{2}}\\{c=-18}\end{array}\right.$,
∵y=log2(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)═log2(x2-x-6),令g(x)=x2-x-6=(x+2)•(x-3).
本题即求当g(x)>0时,g(x)的减区间.
由二次函数的性质可得当g(x)>0时,g(x)的减区间为(-∞,-2),
故选:A.

点评 本题考查复合函数的函数的单调性,对数函数、二次函数的性质,关键是注意函数的定义域,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求函数f(x)=logsinx(cosx+$\frac{1}{2}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)是定义在R上的周期为4的奇函数,当0<x<2时,f(x)=2x,则 f(-$\frac{9}{2}$)+f(4)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设命题p:若x,y∈R,x=y,$\frac{x}{y}$=1;命题q:若函数f(x)=ex,则对任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立.在命题①p∧q,②p∨q,③p∧¬q,④¬p∨q中,是真命题的是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$cos(α-\frac{π}{4})=-\frac{1}{3}$,则sin(-3π+2α)=(  )
A.$\frac{7}{9}$B.$-\frac{7}{9}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.设甲、乙两个班所抽取的10名同学成绩方差分别为$S_甲^2$、$S_乙^2$,比较$S_甲^2$、$S_乙^2$的大小(直接写结果,不必写过程);
(Ⅱ)设集合$A=\{y|y={x^2}-2x+\frac{1}{2}\}$,B={x|m+x2≤1,m<1},命题p:x∈A;命题q:x∈B,若p是q的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)={x^3}-\frac{9}{2}{x^2}+6x-a$.
(1)对任意实数x,f'(x)≥m恒成立,求m的最大值;
(2)若函数f(x)恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为$(\frac{8}{3}\;,\;2)$,则$|\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}|$的取值范围为(  )
A.[8,10]B.[9,11]C.[8,11]D.[9,12]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知平面上一定点C(4,0)和一定直线l:x=1,P(x,y)为该平面上一动点,作PQ⊥l,垂足为Q,且$|\overrightarrow{PC}|=2|\overrightarrow{PQ}|$
(1)问点P在什么曲线上?并求出该曲线的方程;
(2)设直线l:y=kx+1与(1)中的曲线交于不同的两点A,B,是否存在实数k,使得以线段AB为直径的圆经过点D(0,-2)?若存在,求出k的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案