精英家教网 > 高中数学 > 题目详情
14.如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是(  )
A.双曲线的一支B.抛物线的一部分C.D.椭圆

分析 当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,由此能求出结果.

解答 解:由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,
用一个与圆锥高成45°角的平面截圆锥,所得图形为椭圆.
故选:C.

点评 本题考查点的轨迹的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若实数a、b满足条件a>b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a2>b2C.ab>b2D.a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥中,AB∥CD,BC⊥CD侧面SAB为等边三角形,AB=BC=2,CD=SD=1.
(1)证明:SD⊥平面SAB;
(2)求二面角A-SB-C的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知:$x{(x-2)^8}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_9}{(x-1)^9}$,则a6=(  )
A.-28B.-448C.112D.448

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(A组题)已知实数x、y满足|x|≤2,|y|≤1,则任取其中一对x、y的值,能使得x2+y2≤1的概率为(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{8}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,AC=1,AA1=2,∠BAC=90°,若直线AB1与直线A1C的夹角的余弦值是$\frac{{\sqrt{10}}}{5}$,则棱AB的长度是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题正确的是(  )
A.命题“?x∈R,使得x2-1<0”的否定是:?x∈R,均有x2-1<0
B.命题“若x=3,则x2-2x-3=0”的否命题是:若x≠3,则x2-2x-3≠0
C.“$α=2kπ+\frac{π}{3}(k∈Z)$”是“$sin2α=\frac{{\sqrt{3}}}{2}$”的必要而不充分条件
D.命题“cosx=cosy,则x=y”的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知1<a<b,m=ab-1,n=ba-1,则m,n的大小关系为(  )
A.m<n
B.m=n
C.m>n
D.m,n的大小关系不确定,与a,b的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=sin2x+acos2x的图象关于直线$x=-\frac{π}{8}$对称.
(1)求实数a的值;
(2)若对任意的x∈[0,$\frac{π}{4}$].使得m[f(x)+8]+2=0有解,求实数m的取值范囤:
(3)若x∈(0,$\frac{5π}{8}$)时,关于x的方程f2(x)-2nf(x)+1=0有四个不等式的实根.求实数n的取值范围.

查看答案和解析>>

同步练习册答案