精英家教网 > 高中数学 > 题目详情
16.在直角坐标平面内,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ=4sinθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-2\sqrt{3}+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到直线l的距离的最大值.

分析 (1)直线l的参数方程消去参数t,能求出直线l的普通方程;曲线C的极坐标方程转化为ρ2=4ρsinθ,能求出曲线C的直角坐标方程.
(2)在曲线C上任取一点P(2cosθ,2+2sinθ),利用点到直线的距离公式及三角函数性质能求出曲线C上的点到直线l的距离最大值.

解答 (10分)
解:(1)∵直线l的参数方程是$\left\{\begin{array}{l}{x=-2\sqrt{3}+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).
∴直线l消去参数t得:$\sqrt{3}x-y=-6$,
∴直线l的普通方程为$\sqrt{3}x-y+6=0$,(2分)
∵曲线C的极坐标方程是ρ=4sinθ,即ρ2=4ρsinθ,
∴曲线C的直角坐标方程为x2+y2=4y,即x2+(y-2)2=4.(5分)
(2)在曲线C上任取一点P,可设其坐标为P(2cosθ,2+2sinθ),(7分)
P到直线l的距离d=$\frac{|2\sqrt{3}cosθ-2sinθ-2+6|}{\sqrt{3+1}}$=$\frac{|4cos(θ+\frac{π}{6})+4|}{2}$=2cos($θ+\frac{π}{6}$)+2≤4,(9分)
当且仅当$θ=-\frac{π}{6}$+2kπ(k∈Z)时等号成立,
曲线C上的点到直线l的距离最大值为4.(10分)

点评 本题考查直线的普通方程和曲线的直角坐标方程的求法,考查曲线上的点到直线的距离的最大值的求法,考查极坐标方程、参数方程、直角坐标方程的互化、点到直线的距离公式、三角函数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设a,b,c∈R且a>b,则下列关系式正确的是(  )
A.ac2>bc2B.a2>b2C.$\frac{1}{a}<\frac{1}{b}$D.a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某招聘考试有编号分别为1,2,3的三道不同的A类考题,另有编号分别为4,5的两道不同的B类考题.
(1)甲从A、B两类考题中各随机抽取一题,用符号(x,y)表示事件“从A、B类考题中抽到的编号分别为x、y,且x<y”共有多少个基本事件?请列举出来;
(2)甲从五道考题中所抽取的两道考题,求其编号之和小于8但不小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式(1-a)x2-4x+6>0的解集为{x|-3<x<1}.
(1)求a的值;
(2)若不等式ax2+mx+3≥0的解集为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知X的分布列为:
X-101
P$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
设Y=2X+3,则Y的期望E(Y)=(  )
A.3B.1C.0D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x3-2x+ex-e-x的奇偶性为奇,在R上的增减性为单调递增(填“单调递增”、“单调递减”或“有增有减”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一次抛掷两枚骰子,向上点数之和不小于10的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{9}$C.$\frac{2}{9}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某厂去年的产值为1,若计划在今后6年内每年的产值比上年增长10%,则从今年开始到第5年底,这个厂的总产值为8.47(已知1.16≈1.77)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一个质点在腰长为4的等腰直角三角形内随机运动,则某时刻该质点距离三角形的三个顶点的距离均超过1的概率为1-$\frac{π}{16}$.

查看答案和解析>>

同步练习册答案