精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)若,且时 ,则=______________

(2)若方程有两个不相等的正根,则的取值范围 ___________

【答案】2 0<m<1

【解析】

(1)将函数写成分段函数,先作出函数f(x)=1﹣(x>0),再将x轴下方部分翻折到x轴上方即可得到函数的图象;根据函数的图象,可知f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,利用0<a<b且f(a)=f(b),即可求得+的值;

(2)构造函数y1=f(x),y2═m,由函数f(x)的图象可得结论.

(1)函数f(x)=|1﹣|=

先作出函数f(x)=1﹣(x>0),

再将x轴下方部分翻折到x轴上方即可得到函数的图象.如图所示:

根据函数的图象,可知f(x)在(0,1]上是减函数,

而在(1,+∞)上是增函数,

由0<a<b且f(a)=f(b)得0<a<1<b,

﹣1=1﹣,∴+=2;

(2)构造函数y1=f(x),y2═m,

由函数f(x)的图象可知,

当0<m<1时,方程f(x)=m有两个不相等的正根.

故答案为:(1). 2 (2). 0<m<1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别是,且点上,抛物线与椭圆交于四点

(I)求的方程;

(Ⅱ)试探究坐标平面上是否存在定点,满足?(若存在,求出的坐标;若不存在,需说明理由.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,正方形所在的平面与正三角形ABC所在的平面互相垂直, ,且 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=-3x2+a6-ax+6.

1解关于a的不等式f1>0;

2若不等式fx>b的解集为-1,3,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角.

(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;
(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题:

①“”是“”的充分不必要条件;

②命题“若 ,则 ”的逆否命题为“若 ,则

③对于命题 ,使得 ,则 ,均有

④若 “ 为假命题,则 均为假命题;

其中正确命题的序号为_______________(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的标准方程是

(1)求它的焦点坐标和准线方程.

(2)直线L过已知抛物线的焦点且倾斜角为,并与抛物线相交于A、B两点,求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为正方形的四棱锥P﹣ABCD,F为PD中点.

(1)求证:PB∥面ACF;
(2)若PD⊥面ABCD,求证:AC⊥面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点

(1)求的取值范围;

(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案