【题目】设函数.
(1)若,且时 ,则=______________
(2)若方程有两个不相等的正根,则的取值范围 ___________
【答案】2 0<m<1
【解析】
(1)将函数写成分段函数,先作出函数f(x)=1﹣(x>0),再将x轴下方部分翻折到x轴上方即可得到函数的图象;根据函数的图象,可知f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,利用0<a<b且f(a)=f(b),即可求得+的值;
(2)构造函数y1=f(x),y2═m,由函数f(x)的图象可得结论.
(1)函数f(x)=|1﹣|=,
先作出函数f(x)=1﹣(x>0),
再将x轴下方部分翻折到x轴上方即可得到函数的图象.如图所示:
根据函数的图象,可知f(x)在(0,1]上是减函数,
而在(1,+∞)上是增函数,
由0<a<b且f(a)=f(b)得0<a<1<b,
∴﹣1=1﹣,∴+=2;
(2)构造函数y1=f(x),y2═m,
由函数f(x)的图象可知,
当0<m<1时,方程f(x)=m有两个不相等的正根.
故答案为:(1). 2 (2). 0<m<1.
科目:高中数学 来源: 题型:
【题目】椭圆的左、右焦点分别是,且点在上,抛物线与椭圆交于四点
(I)求的方程;
(Ⅱ)试探究坐标平面上是否存在定点,满足?(若存在,求出的坐标;若不存在,需说明理由.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,正方形所在的平面与正三角形ABC所在的平面互相垂直, ,且, 是的中点.
(1)求证: ∥平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=-3x2+a(6-a)x+6.
(1)解关于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集为(-1,3),求实数a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角.
(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;
(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下命题:
①“”是“”的充分不必要条件;
②命题“若 ,则 ”的逆否命题为“若 ,则 ”;
③对于命题 : ,使得 ,则 : ,均有 ;
④若 “ 为假命题,则 , 均为假命题;
其中正确命题的序号为_______________(把所有正确命题的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的标准方程是,
(1)求它的焦点坐标和准线方程.
(2)直线L过已知抛物线的焦点且倾斜角为,并与抛物线相交于A、B两点,求弦AB的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.
(1)求的取值范围;
(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com