已知函数。
(Ⅰ)若在是增函数,求b的取值范围;
(Ⅱ)若在时取得极值,且时,恒成立,求c的取值范围.
(Ⅰ);(Ⅱ).
解析试题分析:(Ⅰ)由于增函数的导数应大于等于零,故先对函数求导并令其大于零,可得的取值范围,注意在求导时需细心;(Ⅱ)由函数在处取得极值可知,在处函数导数为零,可求得的值,要使时,恒成立,需要求出在中的最大值,只有最大值小于,则恒成立,故可求得的范围,这类题目就是要求出在给定区间上的最值.
科目:高中数学
来源:
题型:解答题
已知
科目:高中数学
来源:
题型:解答题
预计某地区明年从年初开始的前个月内,对某种商品的需求总量 (万件)近似满足:N*,且)
科目:高中数学
来源:
题型:解答题
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(1),∵在是增函数,
∴恒成立,∴,解得.
∵时,只有时,,∴b的取值范围为. 3分
(Ⅱ)由题意,是方程的一个根,设另一根为,
则 ∴ ∴, 5分
列表分析最值:1 2 + 0 - 0 + 递增
(1)若时,求函数在点处的切线方程;
(2)若函数在上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是3,
若存在,求出的值;若不存在,说明理由.
(1)写出明年第个月的需求量(万件)与月份 的函数关系式,并求出哪个月份的需求量超过万件;
(2)如果将该商品每月都投放到该地区万件(不包含积压商品),要保证每月都满足供应, 应至少为多少万件?(积压商品转入下月继续销售)
(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号