精英家教网 > 高中数学 > 题目详情
在△ABC中,cosB=
2
2
,sin(
π
2
-C)=
1
2

(Ⅰ)求sinA的值;
(Ⅱ)若AB=2
3
,求△ABC的面积.
(Ⅰ)在△ABC中,因为cosB=
2
2
,求得sinB=
2
2
,由sin(
π
2
-C)=cosC=
1
2
,求得sinC=
3
2

所以sinA=sin[π-(B+C)]=sin(B+C)=sinBcosC+cosBsinC
=
2
2
×
1
2
+
2
2
×
3
2
=
2
+
6
4

(Ⅱ)根据正弦定理得:
AB
sinC
=
AC
sinB

所以AC= 
AB
sinC
•sinB=
23
3
2
×
2
2
=
22

所以S△ABC=
1
2
AB•ACsinA=
1
2
×
23
× 
22
×
2
+
6
4
=3+
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、在△ABC中,cos(A-B)+sin(A+B)=2,则△ABC的形状为
等腰直角
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

3、在△ABC中,cos 2B>cos 2A是A>B的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cos(A+C)=-
3
5
,且a,c的等比中项为
35

(1)求△ABC的面积;
(2)若a=7,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cos(A-C)+2cos2
B
2
=
5
2
,三边a,b,c成等比数列,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,cos∠ABC=
1
3
,AB=6,AD=2DC,点D在AC边上.
(Ⅰ)若BC=AC,求sin∠ADB;
(Ⅱ)若BD=4
3
,求BC的长.

查看答案和解析>>

同步练习册答案