精英家教网 > 高中数学 > 题目详情
4.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-2≤0}\end{array}\right.$,z=$\frac{y+1}{x}$的最小值为$-\frac{1}{2}$.

分析 画出平面区域,利用z表示区域内的点与(0,-1)连接的直线的斜率的最小值求z的最小值.

解答 解:由不等式组表示的平面区域得到,
当过(2,-2)即x=2,y=-2时,z的最小值为$\frac{-2+1}{2}=-\frac{1}{2}$;
故答案为:$-\frac{1}{2}$.

点评 本题考查了简单线性规划问题;关键是利用目标函数的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=(x-1)(x-2)(x-3)(x-4)不求导数,判断f′(x)=0有几个实根,并指出这些根所在的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$y=\frac{1}{2x-1}+\sqrt{x+1}+\root{3}{3x-1}$的定义域为$\left\{{x|x≥-1且x≠\frac{1}{2}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.α∈(0,π),方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围是(  )
A.$(0,\frac{π}{4})$B.$(\frac{π}{4},\frac{π}{2})$C.$(0,\frac{π}{2})$D.$(\frac{π}{2},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\vec a$=(sinx,cosx),$\overrightarrow{b}$=(cosx,-cosx).
(1)若$\vec b⊥(\vec a-\vec b)$,且cosx≠0,求$sin2x+sin(\frac{5}{2}π+2x)$的值;
(2)若$f(x)=\vec a•\vec b$,求f(x)在[-$\frac{π}{4}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,BC边上的高所在的直线的方程为x-2y+1=0,∠A的平分线所在直线的方程为y=0,若点B的坐标为(1,2).
(1)求点A的坐标;
(2)求直线BC的方程;
(3)求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知离心率为$\frac{\sqrt{3}}{2}$的椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)过点P(4,1).
(1)求椭圆方程;
(2)不垂直于坐标轴的直线l交椭圆于A,B两点,直线PA与直线PB斜率之和为-2,求证:直线AB恒与x轴交于定点M,并求出点M坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足(1+i)z=2-i,则z=(  )
A.-$\frac{1}{2}$-$\frac{3}{2}$iB.$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}+\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}满足a1=2,a4=4(a3-a2),数列{bn}满足bn=-1+2log2an
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案