精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.
(1)函数f(x)的定义域为(0,+∞),f′(x)=
1
x
•x-(1+lnx)•1
x2
=-
lnx
x2

f′(x)>0?lnx<0?0<x<1,
f′(x)<0?lnx>0?x>1,
所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,函数f(x)在x=1处取得唯一的极值,
由题意,a>0,且a<1<a+
1
3
,解得
2
3
<a<1,
所以实数a的取值范围为
2
3
<a<1;
(2)当x≥1时,f(x)≥
k
x+1
?
1+lnx
x
k
x+1
?k≤
(x+1)(1+lnx)
x

令g(x)=
(x+1)(1+lnx)
x
(x≥1),由题意,k≤g(x)在[1,+∞)上恒成立,
g′(x)=
[(x+1)(1+lnx)]′•x-(x+1)(1+lnx)
x2
=
x-lnx
x2

令h(x)=x-lnx(x≥1),则h′(x)=1-
1
x
≥0,当且仅当x=1时取等号,
所以h(x)=x-lnx在[1,+∞)上单调递增,h(x)≥h(1)=1>0,
因此g′(x)=
h(x)
x2
>0,g(x)在[1,+∞)上单调递增,g(x)min=g(1)=2,
所以k≤2;
(3)由(2),当x≥1时,f(x)≥
2
x+1
,即
1+lnx
x
2
x+1

从而lnx≥1-
2
x+1
>1-
2
x

令x=k(k+1),k∈N+,则有ln[k(k+1)]>1-
2
k(k+1)

分别令k=1,2,3,…,n(n≥2)则有ln(1×2)>1-
2
1×2
,ln(2×3)>1-
2
2×3
,…,
ln[n(n-1)]>1-
2
(n-1)n
,ln[n(n+1)]>1-
2
n(n+1)

将这个不等式左右两端分别相加,则得,
ln[1×22×32×…×n2(n+1)]>n-2[
1
1×2
+
1
2×3
+…+
1
n(n+1)
]=n-2+
2
n+1

故1×22×32×…×n2(n+1)>en-2+
2
n+1
,从而[(n+1)!]2>(n+1)en-2+
2
n+1

当n=1时,不等式显然成立;
所以?n∈N+[(n+1)!]2>(n+1)en-2+
2
n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案