精英家教网 > 高中数学 > 题目详情
已知实数x、y满足
2x-y-1≥0
x-3y+2≤0
3x+y-14≤0
,则目标函数z=2x+y的最大值为(  )
A、12B、11C、10D、3
分析:本题主要考查线性规划的基本知识,先画出约束条件
2x-y-1≥0
x-3y+2≤0
3x+y-14≤0
的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数Z=2x+y的最小值.
解答:精英家教网解:约束条件
2x-y-1≥0
x-3y+2≤0
3x+y-14≤0
的可行域如下图示:
由图易得目标函数z=2x+y在(3,5)处取得最大值11,
故选B.
点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域?②求出可行域各个角点的坐标?③将坐标逐一代入目标函数?④验证,求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x、y满足
(2-
3
)x+y-6+2
3
≤0
2x-y-2>0
y-
3
≥0
,则
xy
(x-y)(x+y)
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y-2|的最小值是(  )
A、5-
5
B、4-
5
C、5
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)已知实数x,y满足约束条件
x≥1
y≤1
x-y≤0
’则z=2x-y的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足:
x-y+2≥0
y≥
1
2
x+1
x+y-1≥0
,则目标函数z=2x-y(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-2y≤0
x+y-3≥0
0≤y≤2
,则z=(
1
2
)x•(
1
4
)y
的最大值为
 

查看答案和解析>>

同步练习册答案