精英家教网 > 高中数学 > 题目详情
(1)已知函数f(x)=ln(1+x)-
ax
x+1
(其中a为常数),求函数f(x)的单调区间;
(2)求证:不等式
1
ln(x+1)
-
1
x
1
2
在0<x<1上恒成立.
(1)由f(x)=ln(1+x)-a(1-
1
x+1
)
知定义域:{x|x>-1}
对f(x)求导得:f′(x)=
1
1+x
-
a
(x+1)2
=
x+1-a
(x+1)2

①在a≤0时,有x+1-a>0恒成立.故f(x)>0
故此时f(x)在(-1,+∞)上单调递增
②在a>0时,由f'(x)=0知x=a-1
x (-1,a-1) a-1 (a-1,+∞)
f'(x) - 0 +
f(x) 极小值
故在a>0时,f(x)在(-1,a-1)上为减函数,在[a-1,+∞)上为增函数.
因此函数在a≤0时,在(-1,+∞)上单调递增;在a>0时,f(x)在(-1,a-1)上为减函数,在[a-1,+∞)上为增函数.…(5分)
(2)要证明:
1
ln(1+x)
-
1
x
1
2
在(0,1)上成立.
只需证:
x
2
ln(1+x)+ln(1+x)-x>0
,在(0,1)上恒成立
g(x)=
x
2
ln(1+x)+ln(1+x)-x

g′(x)=
1
2
(ln(1+x)+x.
1
1+x
)+
1
x+1
-1
=
1
2
(ln(1+x)-
x
1+x
)

由(1)可知a=1,f(x)在x=0时取到最小值
ln(1+x)>
x
1+x
,在x>0时恒成立.
从而可知g'(x)>0,故g(x)在(0,1)上为增函数∴g(x)>g(0)=0
即:
x
2
ln(1+x)+ln(1+x)-x>0
恒成立,从而原不等式得证.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列命题:(1)已知函数f(x)=x+
p
x-1
(p为常数且p>0),若f(x)在区间(1,+∞)的最小值为4,则实数p的值为
9
4
; (2)?x∈[0,
π
2
],sinx+cosx>
2
;(3)正项等比数列{an}中:a4.a6=8,函数f(x)=x(x+a3)(x+a5)(x+a7),则f(0)=16
2
;(4)若数列{an}的前n项和为Sn=2n2-n+1,且bn=2an+1,则数列{bn}前n项和为Tn=4n2-n+2上述命题正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=sin(
1
2
x+
π
4
)
,求函数在区间[-2π,2π]上的单调增区间;
(2)计算:tan70°cos10°(
3
tan20°-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在集合D上的函数y=f(x),若f(x)在D上具有单调性,且存在区间[a,b]⊆D(其中a<b),使当x∈[a,b]时,
f(x)的值域是[a,b],则称函数f(x)是D上的正函数,区间[a,b]称为f(x)的“等域区间”.
(1)已知函数f(x)=
x
是[0,+∞)上的正函数,试求f(x)的等域区间.
(2)试探究是否存在实数k,使函数g(x)=x2+k是(-∞,0)上的正函数?若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

问题1:已知函数f(x)=
x
1+x
,则f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我们若把每一个函数值计算出,再求和,对函数值个数较少时是常用方法,但函数值个数较多时,运算就较繁锁.观察和式,我们发现f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
f(
1
10
)+f(10)
可一般表示为f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
为定值,有此规律从而很方便求和,请求出上述结果,并用此方法求解下面问题:
问题2:已知函数f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,f(x)=a-
2
1+2x
(x∈R)

(1)已知函数f(x)=a-
2
1+2x
(x∈R)
是奇函数,求实数a的值.
(2)试证明:对于任意实数a,f(x)在R上为增函数.

查看答案和解析>>

同步练习册答案