精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)函数f(x)=asin
πx
2
+bcos
πx
2
的一个零点为
1
3
,且f(
3
2
)<f(
13
12
)<0
,对于下列结论:
f(
13
3
)=0
;②f(x)≥f(
4
3
)
;③f(
13
12
)=f(
17
12
)

④f(x)的单调减区间是[4k-
2
3
,4k+
1
3
](k∈Z)

⑤f(x)的单调增区间是[4k+
4
3
,4k+
10
3
](k∈Z)

其中正确的结论是
①②⑤
①②⑤
.(填写所有正确的结论编号)
分析:由题意可得f(x)=
a2+b2
sin(
π
2
x+φ),由f(
1
3
)=0,f(
3
2
)<f(
13
12
)<0
,可确定φ,从而对①②③④⑤逐个判断即可.
解答:解:由题意可得:f(x)=
a2+b2
sin(
π
2
x+φ),
∵f(
1
3
)=0,
∴sin(
π
6
+φ)=0,
∴φ=kπ-
π
6
(k∈Z).不妨取φ=-
π
6
或φ=
6

f(
3
2
)<f(
13
12
)<0
,即sin(
π
2
×
3
2
+φ)<sin(
π
2
×
13
12
+φ)<0,
∴φ=
6

∴f(x)=
a2+b2
sin(
π
2
x+
6
),
对于①,f(
13
3
)=
a2+b2
sin(
π
2
×
13
3
+
6
)=
a2+b2
sin3π=0,故①正确;
对于②f(
4
3
)=
a2+b2
sin(
π
2
×
4
3
+
6
)=
a2+b2
sin
2
=-
a2+b2

∴f(x)=
a2+b2
sin(
π
2
x+
6
)≥-
a2+b2
=f(
4
3
),即②正确;
对于③,∵f(
13
12
)=
a2+b2
sin(
π
2
×
13
12
+
6
)=
a2+b2
sin
33π
24
=-
a2+b2
sin
8

f(
17
12
)=
a2+b2
sin(
π
2
×
17
12
+
6
)=
a2+b2
sin
37π
24
=-
a2+b2
sin
13π
24
≠f(
13
12
).故③错误;
对于④,由2kπ+
π
2
π
2
x+
6
≤2kπ+
2
,(k∈Z)得其单调递减区间为:x∈[4k-
2
3
,4k+
4
3
].故④错误.
对于⑤,由2kπ+
2
π
2
x+
6
≤2kπ+
2
,(k∈Z)得其单调递增区间为:x∈[4k+
4
3
,4k+
10
3
].故⑤正确.
故答案为:①②⑤.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,着重考查辅助角公式的应用及正弦函数的性质,考查学生综合分析与转化运用知识解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案