精英家教网 > 高中数学 > 题目详情

在四棱锥P-ABCD中,底面ABCD是菱形,AC∩BD=O.
(Ⅰ)若AC⊥PD,求证:AC⊥平面PBD;
(Ⅱ)若平面PAC⊥平面ABCD,求证:PB=PD;
(Ⅲ)在棱PC上是否存在点M(异于点C)使得BM∥平面PAD,若存在,求数学公式的值;若不存在,说明理由.

解:(Ⅰ)∵底面ABCD是菱形,∴AC⊥BD.…(1分)
∵AC⊥PD,PD∩BD=D,
∴AC⊥平面PBD.…(3分)
(Ⅱ)证明:由(Ⅰ)可知AC⊥BD.
∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,BD?平面ABCD,
∴BD⊥平面PAC.…(5分)
∵PO⊥平面PAC,∴BD⊥PO.…(7分)
∵底面ABCD是菱形,∴BO=DO.
∴PB=PD.…(8分)
(Ⅲ)解:不存在.下面用反证法加以证明.…(9分)
假设存在点M(异于点C)使得BM∥平面PAD.
在菱形ABCD中,BC∥AD,
∵AD?平面PAD,BC?平面PAD,
∴BC∥平面PAD.…(11分)
∵BM∥平面PBC,BC∥平面PBC,BC∩BM=B,
∴平面PBC∥平面PAD.…(13分)
这与平面PBC与平面PAD相交矛盾,故假设不成立.
∴在棱PC上不存在点M(异于点C)使得BM∥平面PAD.…(14分)
分析:(I)菱形的对角线AC⊥BD,结合已知条件AC⊥PD,利用线面垂直的判定定理可得AC⊥平面PBD;
(II)利用面面垂直的性质定理,结合AC⊥BD得到BD⊥平面PAC,从而BD⊥PO且PO是BD的垂直平分线,得到PB=PD;
(III)利用反证法证明:若在棱PC上是否存在点M(异于点C)使得BM∥平面PAD,就有平面PBC∥平面PAD的矛盾,从而证出在棱PC上不存在点M(异于点C)使得BM∥平面PAD.
点评:本题给出一个特殊四棱锥,要我们证明线面垂直,并且判断线面平行的存在性,着重考查了空间平行、垂直位置关系的判断与证明等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求证:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD⊥平面ABCD,PD=AB=1,EF分别是PB、AD的中点,
(I)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步练习册答案