| A. | ①② | B. | ①③ | C. | ①②③ | D. | ①②③④ |
分析 由条件利用诱导公式、两角和差的三角公式,求得所给的各个式子的值,从而得出结论.
解答 解:∵①tan25°+tan35°+$\sqrt{3}$tan25°tan35°=tan60°(1-tan25°•tan35°)+$\sqrt{3}$tan25°•tan35°=$\sqrt{3}$.
②2(sin35°cos25°+sin55°cos65°)=2(sin35°cos25°+cos5°sin65°)=2sin(35°+25°)=1,
③$\frac{1+tan15°}{1-tan15°}$=tan(45°+15°)=tan60°=$\sqrt{3}$,
④$\frac{tan\frac{π}{3}}{1-ta{n}^{2}\frac{π}{3}}$=$\frac{\sqrt{3}}{1-3}$=-$\frac{\sqrt{3}}{2}$,
故选:B.
点评 本题主要考查诱导公式、两角和差的三角公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π+3}{3}$ | B. | $\frac{π+2}{2}$ | C. | $\frac{π+3}{3}$ | D. | π+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当a>0时,函数F(x)有2个零点 | B. | 当a>0时,函数F(x)有4个零点 | ||
| C. | 当a<0时,函数F(x)有2个零点 | D. | 当a<0时,函数F(x)有3个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{5}$ | B. | -$\frac{5}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com