精英家教网 > 高中数学 > 题目详情
11.计算下列几个式子:①tan25°+tan35°+$\sqrt{3}$tan25°tan35°,②2(sin35°cos25°+sin55°cos65°),③$\frac{1+tan15°}{1-tan15°}$④$\frac{tan\frac{π}{3}}{1-ta{n}^{2}\frac{π}{3}}$,结果为$\sqrt{3}$的是(  )
A.①②B.①③C.①②③D.①②③④

分析 由条件利用诱导公式、两角和差的三角公式,求得所给的各个式子的值,从而得出结论.

解答 解:∵①tan25°+tan35°+$\sqrt{3}$tan25°tan35°=tan60°(1-tan25°•tan35°)+$\sqrt{3}$tan25°•tan35°=$\sqrt{3}$.
②2(sin35°cos25°+sin55°cos65°)=2(sin35°cos25°+cos5°sin65°)=2sin(35°+25°)=1,
③$\frac{1+tan15°}{1-tan15°}$=tan(45°+15°)=tan60°=$\sqrt{3}$,
④$\frac{tan\frac{π}{3}}{1-ta{n}^{2}\frac{π}{3}}$=$\frac{\sqrt{3}}{1-3}$=-$\frac{\sqrt{3}}{2}$,
故选:B.

点评 本题主要考查诱导公式、两角和差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,则z=-$\frac{1}{3}$x+y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sin(2x+$\frac{π}{3}$),将y=f(x)的图象向右平移$\frac{π}{3}$个单位长度后,得到函数g(x)的图象,若动直线x=t与函数y=f(x)和y=g(x)的图象分别交于M、N两点,则|MN|的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P(tanα,-tanα)在函数y=x-1上,求下列各式的值:
(1)求tanα的值;
(2)$\frac{1+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.点M到点A(0,-2)和点B(0,2)的距离之和为8,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=Asin(ωx+φ)+b(A>0,ω>0)的部分图象如图所示,则Aω+b2等于(  )
A.$\frac{2π+3}{3}$B.$\frac{π+2}{2}$C.$\frac{π+3}{3}$D.π+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱柱ABCD-A1B1C1D1中,侧面AA1D1D为矩形,AB⊥平面AA1D1D,CD⊥平面AA1D1D,E、F分别为A1B1、CC1的中点,且AA1=CD=2,AB=AD=1.
(1)求证:EF∥平面A1BC;
(2)求D1到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{ax+1,x≤0}\\{lo{g}_{3}x,x>0}\end{array}\right.$,则下列关于函数y=f[f(x)]+1的零点个数是(  )
A.当a>0时,函数F(x)有2个零点B.当a>0时,函数F(x)有4个零点
C.当a<0时,函数F(x)有2个零点D.当a<0时,函数F(x)有3个零点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线3x+5y-7=0的斜率是(  )
A.-$\frac{3}{5}$B.-$\frac{5}{3}$C.$\frac{5}{3}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案